Reduced Nicotinamide Mononucleotide (NMNH): Difference between revisions

    From Longevity Wiki
    No edit summary
    m (Text replacement - "Orally Consumable Longevity Molecules" to "Orally Consumable Longevity Compounds")
     
    (One intermediate revision by the same user not shown)
    Line 1: Line 1:
    Reduced Nicotinamide Mononucleotide (NMNH), discovered in 2021, represents a novel [[NAD+ Precursor|NAD+ precursor]], offering a promising alternative to the more commonly known compounds such as [[Nicotinamide Mononucleotide (NMN)]] and [[Nicotinamide Riboside (NR)]]. Unlike these precursors, NMNH exhibits a remarkable ability to elevate NAD+ levels in cells more effectively and at a faster rate in mice. NMNH operates via a unique metabolic pathway that is independent of the enzymes NRK (Nicotinamide Riboside Kinase) and NAMPT (Nicotinamide Phosphoribosyltransferase). This distinct mechanism not only sets NMNH apart from other NAD+ precursors but also contributes to its heightened efficacy in boosting NAD+ levels within cells. When administered to mice, NMNH has shown a rapid and sustained increase in NAD+ levels across a variety of tissues including the liver, kidney, muscle, brain, brown adipose tissue, and heart. Interestingly, this effect was not observed in white adipose tissue. This broad-spectrum increase in NAD+ levels underscores the potential of NMNH as a robust and efficient NAD+ precursor, offering new possibilities for its application in health and longevity research.{{pmid|33724555}}  
    Reduced Nicotinamide Mononucleotide (NMNH), discovered in 2021, represents a novel [[NAD+ Precursor|NAD+ precursor]], offering a promising alternative to the more commonly known compounds such as [[Nicotinamide Mononucleotide (NMN)]] and [[Nicotinamide Riboside (NR)]]. Unlike these precursors, NMNH exhibits a remarkable ability to elevate NAD+ levels in cells more effectively and at a faster rate in mice. NMNH operates via a novel metabolic pathway that is independent of the enzymes NRK (Nicotinamide Riboside Kinase) and NAMPT (Nicotinamide Phosphoribosyltransferase). This distinct mechanism not only sets NMNH apart from other NAD+ precursors but also contributes to its heightened efficacy in boosting NAD+ levels within cells. When administered to mice, NMNH has shown a rapid and sustained increase in NAD+ levels across a variety of tissues including the liver, kidney, muscle, brain, brown adipose tissue, and heart. Interestingly, this effect was not observed in white adipose tissue. This broad-spectrum increase in NAD+ levels underscores the potential of NMNH as a robust and efficient NAD+ precursor, offering new possibilities for its application in health and longevity research.{{pmid|33724555}}  


    In 2022, first mass production of NMNH was reported by a Chinese biotech company <ref>https://www.bontac-bio.com/en/news-detail.aspx?id=12343&cid=51</ref>.
    In 2022, first mass production of NMNH was reported by a Chinese biotech company <ref>https://www.bontac-bio.com/en/news-detail.aspx?id=12343&cid=51</ref>.
    Line 5: Line 5:
    == References ==
    == References ==
    <references />
    <references />
    [[Category:Orally Consumable Longevity Molecules]]
    [[Category:Orally Consumable Longevity Compounds]]

    Latest revision as of 04:55, 8 November 2023

    Reduced Nicotinamide Mononucleotide (NMNH), discovered in 2021, represents a novel NAD+ precursor, offering a promising alternative to the more commonly known compounds such as Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR). Unlike these precursors, NMNH exhibits a remarkable ability to elevate NAD+ levels in cells more effectively and at a faster rate in mice. NMNH operates via a novel metabolic pathway that is independent of the enzymes NRK (Nicotinamide Riboside Kinase) and NAMPT (Nicotinamide Phosphoribosyltransferase). This distinct mechanism not only sets NMNH apart from other NAD+ precursors but also contributes to its heightened efficacy in boosting NAD+ levels within cells. When administered to mice, NMNH has shown a rapid and sustained increase in NAD+ levels across a variety of tissues including the liver, kidney, muscle, brain, brown adipose tissue, and heart. Interestingly, this effect was not observed in white adipose tissue. This broad-spectrum increase in NAD+ levels underscores the potential of NMNH as a robust and efficient NAD+ precursor, offering new possibilities for its application in health and longevity research.[1]

    In 2022, first mass production of NMNH was reported by a Chinese biotech company [2].

    References

    1. Zapata-Pérez R et al.: Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice. FASEB J 2021. (PMID 33724555) [PubMed] [DOI]
    2. https://www.bontac-bio.com/en/news-detail.aspx?id=12343&cid=51