Deregulated Nutrient Sensing: Difference between revisions

no edit summary
No edit summary
Line 4: Line 4:
==Key Nutrient Sensing Pathways==
==Key Nutrient Sensing Pathways==
Several critical nutrient-sensing pathways are known to be involved in the regulation of metabolism and aging:
Several critical nutrient-sensing pathways are known to be involved in the regulation of metabolism and aging:
*'''Insulin and IGF-1 Signaling (IIS)''': IIS is crucial for controlling growth and metabolism in response to nutrient availability. Dysregulation of IIS is associated with various metabolic disorders, including diabetes and obesity, and modulating this pathway has been shown to affect lifespan in various organisms.
*'''Insulin and IGF-1 Signaling (IIS)''': IIS is crucial for controlling growth and metabolism in response to nutrient availability. Dysregulation of IIS is associated with various metabolic disorders, including diabetes and obesity, and modulating this pathway has been shown to affect lifespan in various organisms.{{pmid|25592535}}
*'''mTOR Pathway''': The mechanistic target of rapamycin (mTOR) pathway integrates signals from nutrients, growth factors, and energy status to regulate growth, protein synthesis, and autophagy. Overactivation of mTOR is linked to accelerated aging and age-related diseases, while its inhibition has been associated with lifespan extension.
*'''mTOR Pathway''': The mechanistic target of rapamycin (mTOR) pathway integrates signals from nutrients, growth factors, and energy status to regulate growth, protein synthesis, and autophagy. Overactivation of mTOR is linked to accelerated aging and age-related diseases, while its inhibition has been associated with lifespan extension.<ref>Coutin J.What Causes Aging? How Much Have We Learned in Recent Years? https://medium.com/@jessecoutin/what-causes-aging-how-much-have-we-learned-in-recent-years-93b85e6a594a (accessed Feb 16, 2023).</ref>
*'''AMP-Activated Protein Kinase (AMPK)''': AMPK is activated under low energy conditions and helps restore energy balance by promoting catabolic processes and inhibiting anabolic processes. It plays a critical role in maintaining energy homeostasis and is considered a key target for treating metabolic diseases.
*'''AMP-Activated Protein Kinase (AMPK)''': AMPK is activated under low energy conditions and helps restore energy balance by promoting catabolic processes and inhibiting anabolic processes. It plays a critical role in maintaining energy homeostasis and is considered a key target for treating metabolic diseases.{{pmid|27884780}}
*'''[[Sirtuins]]''': Sirtuins are NAD+-dependent deacetylases that respond to changes in the cellular energy state and regulate various metabolic processes, including the response to calorie restriction. They are implicated in the aging process and the development of age-related diseases.
*'''[[Sirtuins]]''': Sirtuins are NAD+-dependent deacetylases that respond to changes in the cellular energy state and regulate various metabolic processes, including the response to calorie restriction. They are implicated in the aging process and the development of age-related diseases.{{pmid|31249645}}


Amino acids regulate multiple interacting nutrient sensing pathways. The adequate sensing of amino acid availability is significant for the effective regulation of protein synthesis and catabolism. An important way of amino acid control for nutrient sensing is via the amino acid sensing taste receptors, members of the T1R and T2R families of G-protein-coupled receptors. Amino acid taste receptors in humans exhibit a high affinity to glutamate, with other L-amino acids also acting as ligands.{{pmid|11894099}}{{pmid|25592535}}
Amino acids regulate multiple interacting nutrient sensing pathways. The adequate sensing of amino acid availability is significant for the effective regulation of protein synthesis and catabolism. An important way of amino acid control for nutrient sensing is via the amino acid sensing taste receptors, members of the T1R and T2R families of G-protein-coupled receptors. Amino acid taste receptors in humans exhibit a high affinity to glutamate, with other L-amino acids also acting as ligands.{{pmid|11894099}}{{pmid|25592535}}