2,851
edits
No edit summary |
No edit summary |
||
Line 90: | Line 90: | ||
=== Bioavailability === | === Bioavailability === | ||
[[File:NMN NAD NAMN.png|thumb|Levels of NAD+ and NAMN in blood were increased by oral administration of 250mg NMN. NAD metabolome in blood was measured every 4 weeks. Three asterisks mean statistical significance: ''p''-value < 0.001.{{pmid|35479740}}]] | [[File:NMN NAD NAMN.png|thumb|Levels of NAD+ and NAMN in blood were increased by oral administration of 250mg NMN. NAD metabolome in blood was measured every 4 weeks. Three asterisks mean statistical significance: ''p''-value < 0.001.{{pmid|35479740}}|alt=Levels of NAD+ and NAMN in blood were increased by oral administration of 250mg NMN.]] | ||
[[Bioavailability]] is a crucial factor in the effectiveness of any dietary supplement, including Nicotinamide Mononucleotide (NMN). It refers to the proportion of a substance that enters the circulation when introduced into the body and is thus able to have an active effect. In the case of NMN, bioavailability determines how much of the compound reaches the bloodstream and subsequently contributes to NAD+ biosynthesis. | [[Bioavailability]] is a crucial factor in the effectiveness of any dietary supplement, including Nicotinamide Mononucleotide (NMN). It refers to the proportion of a substance that enters the circulation when introduced into the body and is thus able to have an active effect. In the case of NMN, bioavailability determines how much of the compound reaches the bloodstream and subsequently contributes to NAD+ biosynthesis. | ||
One of the main challenges with NMN bioavailability is its absorption and transportation within the body. When taken orally, NMN needs to be absorbed through the gastrointestinal tract, which can present barriers to its effective uptake. | One of the main challenges with NMN bioavailability is its absorption and transportation within the body. When taken orally, NMN needs to be absorbed through the gastrointestinal tract, which can present barriers to its effective uptake. | ||
Line 184: | Line 184: | ||
== Controversy about NMN as Direct Precursor == | == Controversy about NMN as Direct Precursor == | ||
[[File:Mean plasma concentration–time profiles of NAD+ and NR in mice following oral NMN administration.png|thumb|NMN administration of NMN–HAP and free NMN increases plasma NAD+ and NR in mice{{pmid|37862582}}]] | [[File:Mean plasma concentration–time profiles of NAD+ and NR in mice following oral NMN administration.png|thumb|NMN administration of NMN–HAP and free NMN increases plasma NAD+ and NR in mice{{pmid|37862582}}|alt=NMN administration of NMN–HAP and free NMN increases plasma NAD+ and NR in mice]] | ||
NMN is often advertised, for example by NMN suppliers, as a direct precursor to NAD+, purportedly making it more effective compared to other precursors like '''Nicotinamide Riboside (NR)'''. However, NMN's role as a direct precursor is only effective when it is '''inside the cell'''. This raises questions about how NMN, when ingested or administered externally, enters the cell to contribute to NAD+ synthesis. The central controversy surrounding NMN as a precursor to NAD+ lies in its mechanism of cellular entry. While NMN is a direct precursor of NAD+ within the cell, the debate focuses on whether NMN can be directly absorbed by cells or if it must first be converted to NR. In that case, NR might have an advantage over NMN, as NMN would require one additional conversion step compared to NR. | NMN is often advertised, for example by NMN suppliers, as a direct precursor to NAD+, purportedly making it more effective compared to other precursors like '''Nicotinamide Riboside (NR)'''. However, NMN's role as a direct precursor is only effective when it is '''inside the cell'''. This raises questions about how NMN, when ingested or administered externally, enters the cell to contribute to NAD+ synthesis. The central controversy surrounding NMN as a precursor to NAD+ lies in its mechanism of cellular entry. While NMN is a direct precursor of NAD+ within the cell, the debate focuses on whether NMN can be directly absorbed by cells or if it must first be converted to NR. In that case, NR might have an advantage over NMN, as NMN would require one additional conversion step compared to NR. | ||