NAD+ Precursor: Difference between revisions

    From Longevity Wiki
    No edit summary
    No edit summary
    Line 8: Line 8:
    ![[Nicotinamide (NAM)]]
    ![[Nicotinamide (NAM)]]
    ![[Nicotinic Acid (NA)]]
    ![[Nicotinic Acid (NA)]]
    |-
    !
    |[[File:Nicotinamide mononucleotide.svg|none|thumb]]
    |[[File:Nicotinamide riboside.svg|none|thumb]]
    |[[File:Nicotinamid.svg|none|thumb]]
    |[[File:Nicotinic acid.svg|none|thumb]]
    |-
    |-
    !Description
    !Description

    Revision as of 21:03, 31 October 2023

    NAD+ precursors are molecules that can be converted into NAD+, a vital coenzyme found in all living cells, crucial for energy production, cellular repair, and longevity. Taking NAD+ directly is generally considered inefficient due to its inability to enter cells directly due to its large size and polar nature, making it unable to cross the cell membrane effectively. Thus, NAD+ precursors like NMN, NR, and NA, which are smaller and can enter cells more easily, are used to increase cellular NAD+ levels, as they can be converted into NAD+ once inside the cells. These precursors are therefore preferred for supplementation to boost NAD+ levels efficiently within the body.

    NAD+ Precursors
    Precursor Nicotinamide Mononucleotide (NMN) Nicotinamide Riboside (NR) Nicotinamide (NAM) Nicotinic Acid (NA)
    Nicotinamide mononucleotide.svg
    Nicotinamide riboside.svg
    Nicotinamid.svg
    Nicotinic acid.svg
    Description A vital NAD+ precursor involved in the biosynthesis of NAD+. NMN enters cells via specific transporters. A significant precursor that is converted into NMN before participating in NAD+ synthesis. NR can enter cells through unique transporters. A form of vitamin B3 and a precursor of NAD+, contributing to its synthesis through the salvage pathway. Another form of vitamin B3 serving as a precursor of NAD+.
    Pathway NAD+ salvage pathway NAD+ salvage pathway Salvage Pathway Preiss-Handler Pathway
    Conversion Process Converted directly to NAD+ through a series of enzymatic reactions. Phosphorylated to NMN by the enzyme NR kinase, then converted to NAD+. Converted to NMN by the enzyme nicotinamide phosphoribosyltransferase (NAMPT), then to NAD+. Converted to NAD+ via a series of enzymatic reactions: NA → NAMN → NAAD → NAD+.
    Molecular Weight 334.22 g/mol 255.25 g/mol 122.13 g/mol 123.11 g/mol
    Bioavailability Currently under investigation, but shows promise in preliminary studies Good bioavailability when taken orally Lower bioavailability compared to NMN and NR Well-established bioavailability
    Safety and Toxicity Considered safe at moderate doses; long-term effects still under investigation Generally regarded as safe; high doses may cause mild side effects Generally safe; excessive amounts may cause flushing and other side effects Safe at recommended doses; high doses may cause flushing
    Natural Sources Not found in significant amounts in food Found in trace amounts in milk Found in meat, fish, and grains Found in meat, fish, and grains
    Research Status Extensively studied in animals; human research is ongoing Well-studied in both animals and humans Extensively researched Extensively researched
    Cost and Accessibility Relatively expensive; widely available as a supplement Moderate cost; widely available as a supplement Less expensive; widely available in both food and supplement form Least expensive; widely available in both food and supplement form
    Half-Life Not well-established; more research needed Short, around 2.7 hours in humans Longer than NMN and NR Long, around 5.6 hours in humans
    Clinical Trials Several ongoing to determine efficacy and safety in humans Numerous completed and ongoing, showing promising results for various health conditions Extensively studied, with numerous trials completed Extensively studied, with numerous trials completed

    See also