Creatine

    From Longevity Wiki
    DALL·E 2023-10-22 19.24.41 - Close-up photo of a 'Creatine Supplement' container on a polished wooden table. Creatine capsules are casually scattered around. To the side, a glass.png

    Creatine is a well-known dietary supplement, popular among athletes for its ability to enhance physical performance in high-intensity, short-duration activities. Apart from its performance-enhancing benefits, recent studies and analysis also hint at creatine's potential advantages concerning longevity and aging.

    Forms of Creatine

    Creatine supplements come in various forms, each with its own set of properties and purported benefits. Here are the most common forms:

    • Creatine Monohydrate: This is the most common and well-researched form of creatine. It consists of creatine molecules and a water molecule. Numerous studies have confirmed its safety and efficacy in improving physical performance.
    • Creatine Ethyl Ester (CEE): This form is claimed to have better absorption rates and a longer half-life in the body compared to Creatine Monohydrate. However, some studies suggest that it may not be as effective.
    • Creatine Hydrochloride (HCL): Creatine HCL is known for its solubility in water. It is believed to require a smaller dosage and to have better absorption compared to Creatine Monohydrate.
    • Creatine Malate: This is creatine bound with malic acid, which is supposed to help with energy production. The malic acid is believed to help in the Krebs Cycle, a pathway that produces ATP.
    • Creatine Citrate: Creatine Citrate is creatine bound with citric acid, making it more water-soluble than Creatine Monohydrate but requiring a larger dosage.
    • Buffered Creatine (Kre-Alkalyn): This form has a higher pH level, which is claimed to allow for better absorption and less stomach discomfort compared to other forms.
    • Creatine Nitrate: This is creatine bound with nitrate molecules. It is supposed to have better solubility in water and higher absorption rates.
    • Creatine Magnesium Chelate: This form is chemically bound to magnesium, which is supposed to enhance water solubility and improve muscle contraction.

    Each form of creatine has its unique characteristics, and individuals may choose a particular form based on personal preferences, tolerance, and the intended benefits they wish to achieve from supplementation. Creatine Monohydrate remains the most recommended form due to its extensive research backing and proven safety and efficacy. Other forms may also be effective, but more research is needed to confirm their benefits and safety.

    Despite claims of increased solubility, bioavailability, and superior uptake mechanisms, there is currently no evidence supporting the use of any alternative form of creatine over creatine monohydrate. Although all forms of creatine (except reatine ethyl ester) were shown to be safe in existing studies, further research is necessary to determine whether alternative forms of creatine are potentially more effective or worth the higher cost. Creatine monohydrate remains as the most studied and cost-effective form of creatine. [1]

    Bioavailability

    Pharmacokinetic profile of creatine monohydrate (CrM), tri-creatine citrate (CrC), or creatine pyruvate (CrPyr) [2]

    In [2] the effects of ingesting isomolar amounts of creatine (4.4 g) in the form of the monohydrate (5 g), tri-creatine citrate (6.7 g) and creatine pyruvate (7.3 g) on creatine concentrations in plasma was compared. The dosage per from were isomolar, meaning every form had the same amount of active molecules. Since the molar mass per form is different, that results in different doses. The findings suggest that different forms of creatine result in slightly altered kinetics of plasma creatine absorption following ingestion. Differences in bioavailability are thought to be unlikely since absorption of creatine monohydrate is already close to 100%. The small differences in kinetics are unlikely to have any effect on muscle creatine elevation during periods of creatine loading.

    Potential Longevity Benefits

    Lifespan

    In animal studies, creatine supplementation has been associated with a 9% increase in lifespan. Creatine-fed mice also demonstrated significantly better performance on neurobehavioral testing. While human trials are needed to confirm these findings, they suggest a potential benefit of creatine supplementation for longevity.

    Muscle Retention

    Creatine supplementation can counteract sarcopenia, the loss of muscle mass associated with aging, by enhancing lean body mass, muscular performance, and fatigue resistance. Supplementation with creatine has shown significant improvements in high-energy actions and grip strength, even in the absence of exercise training. This is crucial in reducing the risks associated with falls and serious injuries in older adults.

    Potential Health Benefits

    Creatine supplementation has been associated with various health benefits which may contribute to its potential role in promoting longevity. Here are some of the potential benefits:

    Cognitive Function

    When it comes to memory, results have varied across age groups. In aging adults (68–85 years), creatine supplementation of 20 g/day for 7 days improved memory measures such as forward number recall, backward and forward spatial recall, and long-term memory. Further, vegetarians saw working memory improvements after creatine supplementation of 5 g/day for 6 weeks. A direct comparison between omnivores and vegetarians revealed better memory post creatine supplementation in vegetarians than meat-eaters. However, some studies did not observe any beneficial effects of creatine on memory measures in children, adults, and older adults. [3]

    Moreover, sleep deprivation, which is known to impact brain bioenergetics, seems to be another area where creatine supplementation shows promise. Preliminary evidence suggests that combining creatine supplementation with sleep deprivation can enhance cognitive function, especially when coupled with mild to moderate exercise. For instance, after 24 hours of sleep deprivation, those supplemented with creatine saw less change in performance from baseline in random movement generation, choice reaction time, balance, and mood state. Additionally, another experiment from the same group indicated that creatine supplementation counteracted the loss of complex central executive function due to sleep deprivation. [3]

    Overall, there is mounting evidence suggesting that creatine supplementation can enhance certain cognitive functions, especially when brain bioenergetics are under stress, such as during sleep deprivation.

    Cardiovascular Health

    Creatine supplementation has shown promise in enhancing cardiac muscle performance. In animal studies, creatine restored ATP levels under cardiac stress conditions and reduced markers of heart muscle exhaustion. Human studies, although limited, have also shown promising results in improving cardiac performance in patients with chronic congestive heart failure.

    Blood Sugar Regulation

    Creatine supplementation has shown potential in managing blood sugar levels by increasing the body's ability to utilize glucose as metabolic fuel. This is particularly beneficial for diabetic individuals. Studies have shown creatine supplementation alongside moderate exercise improves oral glucose tolerance test results, indicating creatine's potential benefit in blood sugar regulation.

    Potential Disease Benefits

    Creatine Deficiency Syndrome

    Robust evidence highlights the significance of creatine on cognitive function, particularly observed in individuals with creatine deficient syndromes known to deplete brain creatine stores. Creatine deficiency syndrome is marked by mental and developmental disorders, including learning delays and seizures. Notably, these symptoms are, to some extent, reversed by creatine supplementation. Human studies have yielded mixed results. While some studies have discovered benefits on cognitive functioning, others found no such effects, as comprehensively reviewed by Roschel and colleagues in 2022. [3]

    Safety and Dosage

    Safety

    A double-blind placebo-controlled study conducted in 2020 evaluated creatine monohydrate supplementation's effect on various health indicators in resistance training practitioners. The participants were supplemented with 0.3 g/kg (24g for 80kg) per day creatine monohydrate for 7 days. The study found that creatine monohydrate supplementation promoted an increase in performance and body weight, without causing any adverse events. No modifications were observed in a panel of blood and urine health indicators including red and white blood cell parameters, blood lipid profile, metabolic and urine markers, hepatic and renal function, indicating the safety of creatine monohydrate supplementation for health[4].

    Moreover, an evidence-based scientific evaluation has confirmed in 2021 that, when ingested at recommended dosages, creatine supplementation does not result in kidney damage and/or renal dysfunction in healthy individuals, does not cause dehydration or muscle cramping, and appears to be generally safe and potentially beneficial for children and adolescents[5].

    Misconceptions

    Based on a scientific evaluation in 2021 [5], it's important to address certain misconceptions associated with creatine supplementation:

    • Creatine supplementation does not always lead to water retention.
    • Creatine is not an anabolic steroid.
    • The majority of available evidence does not support a link between creatine supplementation and hair loss/baldness.
    • Creatine supplementation does not cause dehydration or muscle cramping.
    • Creatine supplementation does not increase fat mass.

    Dosage

    The optimal dosage of creatine can vary based on individual factors including body weight, activity level, and the specific goals of supplementation. Below are two common dosing protocols for creatine monohydrate [5]:

    • Loading Protocol: Creatine ‘loading’ is defined as supplementing with oral creatine for 5–7 days with a dosage of 20–25 g/day, often divided into smaller doses throughout the day (e.g., four to five, 5 g servings/day). Creatine ‘loading’ may also be prescribed relative to body mass, for example, 0.3 g/kg/d for 5-7 days (i.e., 21 g/day for a 70 kg individual). The ‘loading’ phase of creatine supplementation is followed by a daily ‘maintenance’ phase often ranging from daily 3–5 g servings/day. As dosages of greater than 10 grams may potentially lead to gastrointestinal distress (i.e., diarrhea), a 'loading' phase of 10 g/day may be considerd.
    • Non-Loading Protocol: Alternatively, some individuals may opt for a "no-loading protocol" where they take 3-5 grams of creatine per day consistently without a loading phase. This method may take longer to saturate the muscles with creatine but is often preferred for its simplicity and ease of adherence. For example, creatine accumulation in muscle was similar (~20% increase) after participants consumed 3 g/day for 28 days or 20 g/day for 6 days.

    Determination of which creatine supplementation protocol is preferred may depend on the goal of the individual. For instance, if an individual is hoping to maximize the ergogenic potential in a very short period of time (< 30 days), adopting the creatine ‘loading’ protocol may be advised. However, if an individual is planning to ingest creatine over an extended period of time (> 30 days), or if avoiding potential weight gain which can sometimes occur during creatine ‘loading’, the creatine non-loading protocol would be a viable option.

    The recommended dosage may also vary depending on the form of creatine being used. For example, other forms of creatine like Creatine Hydrochloride (HCL) or Creatine Ethyl Ester (CEE) might require different dosages compared to Creatine Monohydrate.

    Efficacy

    Creatine supplementation, particularly when combined with resistance training, produces the vast majority of musculoskeletal and performance benefits in older adults. Even without exercise, creatine supplementation alone can provide some muscle and performance benefits for older adults. The supplementation has shown to be beneficial for a variety of athletic and sporting activities and provides a variety of benefits for females across their lifespan. It's also established that other forms of creatine are not superior to creatine monohydrate[5].

    Timing of Supplementation

    A meta-study conducted in 2021, followed by another in 2022, reviewed the timing of creatine Supplementation around exercise and highlighted that the evidence supporting a specific timing (i.e., pre- versus post- versus during-exercise) remains limited and somewhat contradictory. The discrepancies in the existing data likely stem from differing supplementation protocols, sample populations, and training regimens across studies. Currently, adapting creatine timing specifically according to when training is performed is not backed by solid evidence and should not be a major concern. Both meta-studies emphasize the need for more well-controlled studies to determine whether the timing of creatine supplementation around training significantly influences intramuscular creatine content and its ergogenic effects. [6][7]

    Conclusion

    Creatine supplementation presents a promising avenue for enhancing various aspects of health and possibly longevity, particularly concerning cognitive function, cardiovascular health, blood sugar regulation, and muscle retention. While the evidence is growing, further research, especially large-scale human trials, are required to better understand the full spectrum of creatine's benefits on longevity.

    See Also

    References

    1. Fazio C et al.: Efficacy of Alternative Forms of Creatine Supplementation on Improving Performance and Body Composition in Healthy Subjects: A Systematic Review. J Strength Cond Res 2022. (PMID 36000773) [PubMed] [DOI] Fazio, C, Elder, CL, and Harris, MM. Efficacy of alternative forms of creatine supplementation on improving performance and body composition in healthy subjects: a systematic review. J Strength Cond Res 36(9): 2663-2670, 2022-Novel forms of creatine have appeared in the marketplace with substantial claims of improved efficacy compared to creatine monohydrate (CrM). The purpose of this study was to conduct a systematic review on alternative forms of creatine to determine (a) whether they are effective ergogenic aids and (b) whether they outperform CrM. A separate comparison was conducted to determine average cost of various forms of creatine. Cochrane Central Register of Controlled Trials (CENTRAL), PubMed, Medline, and Google Scholar were systematically reviewed according to PRISMA guidelines. The design of the review was set to answer the PICOS model (subjects, interventions, comparators, outcomes, and study design). Seventeen randomized placebo controlled clinical trials examining exercise performance outcomes and body composition were included in the analysis. Magnesium-creatine chelate and creatine citrate, malate, ethyl ester, nitrate, and pyruvate were the only forms researched in the literature. Of these studies, only 3 studies compared the alternative creatine form to CrM, making it difficult to compare efficacy to CrM. There were no consistent findings of performance enhancement among alternative forms of creatine when compared to placebo. A review of the marketplace shows that CrM is the lowest cost form of creatine. Due to the paucity of studies on alternative forms of creatine as well as high prices on the market of these alternative forms, CrM remains as the most extensively studied form of creatine that shows efficacy, safety, and lowest cost to consumer.
    2. 2.0 2.1 Jäger R et al.: Comparison of new forms of creatine in raising plasma creatine levels. J Int Soc Sports Nutr 2007. (PMID 17997838) [PubMed] [DOI] [Full text] BACKGROUND: Previous research has shown that plasma creatine levels are influenced by extracellular concentrations of insulin and glucose as well as by the intracellular creatine concentration. However, the form of creatine administered does not appear to have any effect although specific data on this is lacking. This study examined whether the administration of three different forms of creatine had different effects on plasma creatine concentrations and pharmacokinetics. METHODS: Six healthy subjects (three female and three male subjects) participated in the study. Each subject was assigned to ingest a single dose of isomolar amounts of creatine (4.4 g) in the form of creatine monohydrate (CrM), tri-creatine citrate (CrC), or creatine pyruvate (CrPyr) using a balanced cross-over design. Plasma concentration curves, determined over eight hours after ingestion, were subject to pharmacokinetic analysis and primary derived data were analyzed by repeated measures ANOVA. RESULTS: Mean peak concentrations and area under the curve (AUC) were significantly higher with CrPyr (17 and 14%, respectively) in comparison to CrM and CrC. Mean peak concentration and AUC were not significantly different between CrM and CrC. Despite the higher peak concentration with CrPyr there was no difference between the estimated velocity constants of absorption (ka) or elimination (kel) between the three treatments. There was no effect of treatment with CrPyr on the plasma pyruvate concentration. CONCLUSION: The findings suggest that different forms of creatine result in slightly altered kinetics of plasma creatine absorption following ingestion of isomolar (with respect to creatine) doses of CrM, CrC and CrPyr although differences in ka could not be detected due to the small number of blood samples taken during the absorption phase. Characteristically this resulted in higher plasma concentrations of creatine with CrPyr. Differences in bioavailability are thought to be unlikely since absorption of CrM is already close to 100%. The small differences in kinetics are unlikely to have any effect on muscle creatine elevation during periods of creatine loading.
    3. 3.0 3.1 3.2 Forbes SC et al.: Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022. (PMID 35267907) [PubMed] [DOI] [Full text] While the vast majority of research involving creatine supplementation has focused on skeletal muscle, there is a small body of accumulating research that has focused on creatine and the brain. Preliminary studies indicate that creatine supplementation (and guanidinoacetic acid; GAA) has the ability to increase brain creatine content in humans. Furthermore, creatine has shown some promise for attenuating symptoms of concussion, mild traumatic brain injury and depression but its effect on neurodegenerative diseases appears to be lacking. The purpose of this narrative review is to summarize the current body of research pertaining to creatine supplementation on total creatine and phophorylcreatine (PCr) content, explore GAA as an alternative or adjunct to creatine supplementation on brain creatine uptake, assess the impact of creatine on cognition with a focus on sleep deprivation, discuss the effects of creatine supplementation on a variety of neurological and mental health conditions, and outline recent advances on creatine supplementation as a neuroprotective supplement following traumatic brain injury or concussion.
    4. Almeida D et al.: Creatine supplementation improves performance, but is it safe? Double-blind placebo-controlled study. J Sports Med Phys Fitness 2020. (PMID 32597619) [PubMed] [DOI] BACKGROUND: Creatine represents a natural supplement and ergogenic aid for sport performance, but there are several concerns regarding its safety for health. The present double-blind placebo-controlled study evaluated the effect of creatine monohydrate supplementation on a panel of blood and urine health indicators in resistance training practitioners. METHODS: Eighteen males performing resistance training three times per week were supplemented with 0.3 g/kg per day creatine monohydrate for 7 days and compared with matched controls supplemented with dextrosol. Blood and urine samples were collected pre- and 30 days post-supplementation to evaluate 41 biochemical parameters and renal function. RESULTS: Creatine monohydrate supplementation did not cause adverse events and, as expected, promoted an increase of the performance and body weight. No modification of red blood cells parameters, white blood cells profile, blood lipid profile, metabolic and urine markers, hepatic and renal function were observed in the supplemented group. CONCLUSIONS: Despite the expected weight increase, the creatine monohydrate supplementation is safe for health and no detrimental effects on different organs and physiological systems were observed in our cohort of volunteers.
    5. 5.0 5.1 5.2 5.3 Antonio J et al.: Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show?. J Int Soc Sports Nutr 2021. (PMID 33557850) [PubMed] [DOI] [Full text] Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
    6. Ribeiro F et al.: Timing of Creatine Supplementation around Exercise: A Real Concern?. Nutrients 2021. (PMID 34445003) [PubMed] [DOI] [Full text] Creatine has been considered an effective ergogenic aid for several decades; it can help athletes engaged in a variety of sports and obtain performance gains. Creatine supplementation increases muscle creatine stores; several factors have been identified that may modify the intramuscular increase and subsequent performance benefits, including baseline muscle Cr content, type II muscle fibre content and size, habitual dietary intake of Cr, aging, and exercise. Timing of creatine supplementation in relation to exercise has recently been proposed as an important consideration to optimise muscle loading and performance gains, although current consensus is lacking regarding the ideal ingestion time. Research has shifted towards comparing creatine supplementation strategies pre-, during-, or post-exercise. Emerging evidence suggests greater benefits when creatine is consumed after exercise compared to pre-exercise, although methodological limitations currently preclude solid conclusions. Furthermore, physiological and mechanistic data are lacking, in regard to claims that the timing of creatine supplementation around exercise moderates gains in muscle creatine and exercise performance. This review discusses novel scientific evidence on the timing of creatine intake, the possible mechanisms that may be involved, and whether the timing of creatine supplementation around exercise is truly a real concern.
    7. Candow DG et al.: Creatine O'Clock: Does Timing of Ingestion Really Influence Muscle Mass and Performance?. Front Sports Act Living 2022. (PMID 35669557) [PubMed] [DOI] [Full text] It is well-established that creatine supplementation augments the gains in muscle mass and performance during periods of resistance training. However, whether the timing of creatine ingestion influences these physical and physiological adaptations is unclear. Muscle contractions increase blood flow and possibly creatine transport kinetics which has led some to speculate that creatine in close proximity to resistance training sessions may lead to superior improvements in muscle mass and performance. Furthermore, creatine co-ingested with carbohydrates or a mixture of carbohydrates and protein that alter insulin enhance creatine uptake. The purpose of this narrative review is to (i) discuss the purported mechanisms and variables that possibly justify creatine timing strategies, (ii) to critically evaluate research examining the strategic ingestion of creatine during a resistance training program, and (iii) provide future research directions pertaining to creatine timing.