Creatine
Creatine is a well-known dietary supplement, popular among athletes for its ability to enhance physical performance in high-intensity, short-duration activities. Apart from its performance-enhancing benefits, recent studies and analysis also hint at creatine's potential advantages concerning longevity and aging.
Forms of Creatine
Creatine supplements come in various forms, each with its own set of properties and purported benefits. Here are the most common forms:
- Creatine Monohydrate: This is the most common and well-researched form of creatine. It consists of creatine molecules and a water molecule. Numerous studies have confirmed its safety and efficacy in improving physical performance.
- Creatine Ethyl Ester (CEE): This form is claimed to have better absorption rates and a longer half-life in the body compared to Creatine Monohydrate. However, some studies suggest that it may not be as effective.
- Creatine Hydrochloride (HCL): Creatine HCL is known for its solubility in water. It is believed to require a smaller dosage and to have better absorption compared to Creatine Monohydrate.
- Creatine Malate: This is creatine bound with malic acid, which is supposed to help with energy production. The malic acid is believed to help in the Krebs Cycle, a pathway that produces ATP.
- Creatine Citrate: Creatine Citrate is creatine bound with citric acid, making it more water-soluble than Creatine Monohydrate but requiring a larger dosage.
- Buffered Creatine (Kre-Alkalyn): This form has a higher pH level, which is claimed to allow for better absorption and less stomach discomfort compared to other forms.
- Creatine Nitrate: This is creatine bound with nitrate molecules. It is supposed to have better solubility in water and higher absorption rates.
- Creatine Magnesium Chelate: This form is chemically bound to magnesium, which is supposed to enhance water solubility and improve muscle contraction.
Each form of creatine has its unique characteristics, and individuals may choose a particular form based on personal preferences, tolerance, and the intended benefits they wish to achieve from supplementation. Creatine Monohydrate remains the most recommended form due to its extensive research backing and proven safety and efficacy. Other forms may also be effective, but more research is needed to confirm their benefits and safety.
Despite claims of increased solubility, bioavailability, and superior uptake mechanisms, there is currently no evidence supporting the use of any alternative form of creatine over creatine monohydrate. Although all forms of creatine (except reatine ethyl ester) were shown to be safe in existing studies, further research is necessary to determine whether alternative forms of creatine are potentially more effective or worth the higher cost. Creatine monohydrate remains as the most studied and cost-effective form of creatine. [1]
Bioavailability

In [2] the effects of ingesting isomolar amounts of creatine (4.4 g) in the form of the monohydrate (5 g), tri-creatine citrate (6.7 g) and creatine pyruvate (7.3 g) on creatine concentrations in plasma was compared. The dosage per from were isomolar, meaning every form had the same amount of active molecules. Since the molar mass per form is different, that results in different doses. The findings suggest that different forms of creatine result in slightly altered kinetics of plasma creatine absorption following ingestion. Differences in bioavailability are thought to be unlikely since absorption of creatine monohydrate is already close to 100%. The small differences in kinetics are unlikely to have any effect on muscle creatine elevation during periods of creatine loading.
Potential Longevity Benefits
Lifespan
In animal studies, creatine supplementation has been associated with a 9% increase in lifespan. Creatine-fed mice also demonstrated significantly better performance on neurobehavioral testing. While human trials are needed to confirm these findings, they suggest a potential benefit of creatine supplementation for longevity.
Muscle Retention
Creatine supplementation can counteract sarcopenia, the loss of muscle mass associated with aging, by enhancing lean body mass, muscular performance, and fatigue resistance. Supplementation with creatine has shown significant improvements in high-energy actions and grip strength, even in the absence of exercise training. This is crucial in reducing the risks associated with falls and serious injuries in older adults.
Potential Health Benefits
Creatine supplementation has been associated with various health benefits which may contribute to its potential role in promoting longevity. Here are some of the potential benefits:
Cognitive Function
When it comes to memory, results have varied across age groups. In aging adults (68–85 years), creatine supplementation of 20 g/day for 7 days improved memory measures such as forward number recall, backward and forward spatial recall, and long-term memory. Further, vegetarians saw working memory improvements after creatine supplementation of 5 g/day for 6 weeks. A direct comparison between omnivores and vegetarians revealed better memory post creatine supplementation in vegetarians than meat-eaters. However, some studies did not observe any beneficial effects of creatine on memory measures in children, adults, and older adults. [3]
Moreover, sleep deprivation, which is known to impact brain bioenergetics, seems to be another area where creatine supplementation shows promise. Preliminary evidence suggests that combining creatine supplementation with sleep deprivation can enhance cognitive function, especially when coupled with mild to moderate exercise. For instance, after 24 hours of sleep deprivation, those supplemented with creatine saw less change in performance from baseline in random movement generation, choice reaction time, balance, and mood state. Additionally, another experiment from the same group indicated that creatine supplementation counteracted the loss of complex central executive function due to sleep deprivation. [3]
Overall, there is mounting evidence suggesting that creatine supplementation can enhance certain cognitive functions, especially when brain bioenergetics are under stress, such as during sleep deprivation.
Cardiovascular Health
Creatine supplementation has shown promise in enhancing cardiac muscle performance. In animal studies, creatine restored ATP levels under cardiac stress conditions and reduced markers of heart muscle exhaustion. Human studies, although limited, have also shown promising results in improving cardiac performance in patients with chronic congestive heart failure.
Blood Sugar Regulation
Creatine supplementation has shown potential in managing blood sugar levels by increasing the body's ability to utilize glucose as metabolic fuel. This is particularly beneficial for diabetic individuals. Studies have shown creatine supplementation alongside moderate exercise improves oral glucose tolerance test results, indicating creatine's potential benefit in blood sugar regulation.
Reproductive Health
There's interest in the potential of creatine to improve fertility due to its role in energy production, crucial for sperm motility. Creatine kinase activity has been associated with better sperm quality and function (4 studies). Some fertility treatments have experimented with adding creatine to the medium during intrauterine insemination to boost sperm viability and the success rates of the procedures, as reported in multiple studies (6 studies). While these initial findings are promising, more research is necessary to fully understand creatine's role in fertility and reproductive health. [4]
Skin Health (Direct Application)
Research has shown that creatine can be beneficial for skin health when applied topically. It's believed that creatine's impact on energy availability in skin cells and its antioxidant properties may be the driving factors behind its potential benefits. Studies have found that applying creatine on the skin can protect against various cellular stress conditions such as oxidative and UV damage, which are known to contribute to premature skin aging and damage. Additionally, topical creatine application has been shown to penetrate the skin, stimulate collagen synthesis, and even affect gene expression and protein levels in the skin. Notably, a study observed that applying a creatine-containing formulation on the skin for 6 weeks led to a significant reduction in sagging cheeks, crow's feet wrinkles, and under-eye wrinkles. These findings suggest that creatine could be a valuable ingredient for topical treatments aimed at preventing and addressing skin aging. [4]
Potential Disease Benefits
Creatine Deficiency Syndrome
Robust evidence highlights the significance of creatine on cognitive function, particularly observed in individuals with creatine deficient syndromes known to deplete brain creatine stores. Creatine deficiency syndrome is marked by mental and developmental disorders, including learning delays and seizures. Notably, these symptoms are, to some extent, reversed by creatine supplementation. Human studies have yielded mixed results. While some studies have discovered benefits on cognitive functioning, others found no such effects, as comprehensively reviewed by Roschel and colleagues in 2022. [3]
Anticancer Effects
Creatine supplementation is being explored for potential anticancer properties, stemming from its crucial role in energy maintenance within cells, especially concerning the energy shuttle system involving creatine kinase. Research has shown that certain malignant cells and immune cells combating cancer often have low creatine content, which may impact energy availability crucial for their functions. The expression of the creatine transport gene, SLC6A8, notably increases in tumor-infiltrating immune cells, indicating a possible role of creatine in cancer immunity. [4]
Studies have demonstrated anticancer properties of creatine and its related compound, cyclocreatine. For instance, creatine, when used alongside anticancer medication like methylglyoxal (MG) and ascorbic acid, has shown to significantly enhance the medication's efficacy, even eliminating visible signs of tumor growth in some cases. Creatine supplementation elevated the low creatine and creatine kinase levels in sarcoma tissues, leading to a regression of tumor cells. Further, creatine's administration, either directly or through dietary supplementation, notably suppressed tumor growth in various mouse tumor models, by possibly enhancing the responses of CD8 T cells, which are crucial for tumor immunity. The findings suggest that creatine supplementation could serve as a supportive anticancer therapeutic intervention, especially in enhancing T cell-based cancer immunotherapies, although more research is needed to confirm these effects and understand the underlying mechanisms. [4]
Chronic Fatigue Syndrome
Chronic fatigue syndrome (CFS), also known as post-viral fatigue syndrome (PFS) or myalgic encephalomyelitis (ME), is associated with persistent fatigue and other symptoms like muscle pains and cognitive disorders. The exact cause of these conditions is unknown, but recent studies have shown interest in creatine's potential to enhance functional capacity in affected individuals. Some evidence suggests that impaired creatine metabolism may play a role in CFS-related diseases. [4]
Several studies explored creatine or creatine-related compounds' impact on patient outcomes in CFS conditions. For instance, creatine supplementation led to improvements in depression symptoms, pain measures, and quality of life in certain patients. Another study showed significant improvements in severity markers of fibromyalgia, disability, pain, sleep quality, and overall life quality with creatine supplementation, although these improvements reverted after stopping the therapy. Creatine supplementation also showed potential in increasing muscle function in fibromyalgia patients. Additionally, GAA supplementation positively impacted creatine metabolism and work capacity in women with CFS, albeit without significantly affecting general fatigue symptoms. [4]
The findings from these studies suggest that creatine and/or GAA may offer some therapeutic benefits for patients with CFS, ME, or fibromyalgia by improving functional capacity. However, more research is needed to confirm these effects and understand creatine's role better in managing chronic fatigue-related syndromes. [4]
Antidepressive Effects
There have been suggestions since the early 1980s that creatine metabolism or availability might have antidepressive effects, based on numerous studies. Further investigations have assessed how creatine or its precursors like S-adenosyl-L-methionine (SAMe) and guanidinoacetate (GAA), influence brain phosphagen levels, depression markers, or the effectiveness of antidepressant medications. For instance, SAMe has been found to be a viable treatment for clinical depression. In one study, SAMe supplementation led to increased brain creatine and phosphocreatine (PCr) levels, with a more pronounced effect in women compared to men. [4]
Animal studies have also shown potential antidepressive effects of creatine. In one study, female rats displayed an antidepressant-like response when fed creatine diets, and in another, a single treatment of creatine or exercise showed partial antidepressant effects in mice under chronic mild stress, with combined creatine and exercise yielding greater benefits. Creatine administration also abolished corticosterone-induced depressive-like behaviors in mice in a separate study. [4]
In human trials, some support has been found for creatine's effect on depression. For instance, a study found a significant negative relationship between dietary creatine intake and depression among adults in the U.S. Another study reported improved outcomes in a small sample of patients with unipolar depression following creatine monohydrate supplementation. Moreover, creatine supplementation was found to enhance remission rates in bipolar patients in a couple of studies, with one noting improved verbal fluency tests and the other highlighting enhanced remission MADRS scores in participants who completed the study. [4]
Although more research is needed, there is some evidence suggesting that creatine may help manage some types of depression and/or anxiety disorders, particularly when combined with choline. This indicates that creatine supplementation might be a supportive measure for mental health. [4]
Safety and Dosage
Safety
A double-blind placebo-controlled study conducted in 2020 evaluated creatine monohydrate supplementation's effect on various health indicators in resistance training practitioners. The participants were supplemented with 0.3 g/kg (24g for 80kg) per day creatine monohydrate for 7 days. The study found that creatine monohydrate supplementation promoted an increase in performance and body weight, without causing any adverse events. No modifications were observed in a panel of blood and urine health indicators including red and white blood cell parameters, blood lipid profile, metabolic and urine markers, hepatic and renal function, indicating the safety of creatine monohydrate supplementation for health[5].
Moreover, an evidence-based scientific evaluation has confirmed in 2021 that, when ingested at recommended dosages, creatine supplementation does not result in kidney damage and/or renal dysfunction in healthy individuals, does not cause dehydration or muscle cramping, and appears to be generally safe and potentially beneficial for children and adolescents[6].
Misconceptions
Based on a scientific evaluation in 2021 [6], it's important to address certain misconceptions associated with creatine supplementation:
- Creatine supplementation does not always lead to water retention.
- Creatine is not an anabolic steroid.
- The majority of available evidence does not support a link between creatine supplementation and hair loss/baldness.
- Creatine supplementation does not cause dehydration or muscle cramping.
- Creatine supplementation does not increase fat mass.
Dosage
The optimal dosage of creatine can vary based on individual factors including body weight, activity level, and the specific goals of supplementation. Below are two common dosing protocols for creatine monohydrate [6]:
- Loading Protocol: Creatine ‘loading’ is defined as supplementing with oral creatine for 5–7 days with a dosage of 20–25 g/day, often divided into smaller doses throughout the day (e.g., four to five, 5 g servings/day). Creatine ‘loading’ may also be prescribed relative to body mass, for example, 0.3 g/kg/d for 5-7 days (i.e., 21 g/day for a 70 kg individual). The ‘loading’ phase of creatine supplementation is followed by a daily ‘maintenance’ phase often ranging from daily 3–5 g servings/day. As dosages of greater than 10 grams may potentially lead to gastrointestinal distress (i.e., diarrhea), a 'loading' phase of 10 g/day may be considerd.
- Non-Loading Protocol: Alternatively, some individuals may opt for a "no-loading protocol" where they take 3-5 grams of creatine per day consistently without a loading phase. This method may take longer to saturate the muscles with creatine but is often preferred for its simplicity and ease of adherence. For example, creatine accumulation in muscle was similar (~20% increase) after participants consumed 3 g/day for 28 days or 20 g/day for 6 days.
Determination of which creatine supplementation protocol is preferred may depend on the goal of the individual. For instance, if an individual is hoping to maximize the ergogenic potential in a very short period of time (< 30 days), adopting the creatine ‘loading’ protocol may be advised. However, if an individual is planning to ingest creatine over an extended period of time (> 30 days), or if avoiding potential weight gain which can sometimes occur during creatine ‘loading’, the creatine non-loading protocol would be a viable option.
The recommended dosage may also vary depending on the form of creatine being used. For example, other forms of creatine like Creatine Hydrochloride (HCL) or Creatine Ethyl Ester (CEE) might require different dosages compared to Creatine Monohydrate.
Efficacy
Creatine supplementation, particularly when combined with resistance training, produces the vast majority of musculoskeletal and performance benefits in older adults. Even without exercise, creatine supplementation alone can provide some muscle and performance benefits for older adults. The supplementation has shown to be beneficial for a variety of athletic and sporting activities and provides a variety of benefits for females across their lifespan. It's also established that other forms of creatine are not superior to creatine monohydrate[6].
Timing of Supplementation
A meta-study conducted in 2021, followed by another in 2022, reviewed the timing of creatine Supplementation around exercise and highlighted that the evidence supporting a specific timing (i.e., pre- versus post- versus during-exercise) remains limited and somewhat contradictory. The discrepancies in the existing data likely stem from differing supplementation protocols, sample populations, and training regimens across studies. Currently, adapting creatine timing specifically according to when training is performed is not backed by solid evidence and should not be a major concern. Both meta-studies emphasize the need for more well-controlled studies to determine whether the timing of creatine supplementation around training significantly influences intramuscular creatine content and its ergogenic effects. [7][8]
Conclusion
Creatine supplementation presents a promising avenue for enhancing various aspects of health and possibly longevity, particularly concerning cognitive function, cardiovascular health, blood sugar regulation, and muscle retention. While the evidence is growing, further research, especially large-scale human trials, are required to better understand the full spectrum of creatine's benefits on longevity.
See Also
References
- ↑ Fazio C et al.: Efficacy of Alternative Forms of Creatine Supplementation on Improving Performance and Body Composition in Healthy Subjects: A Systematic Review. J Strength Cond Res 2022. (PMID 36000773) [PubMed] [DOI] Abstract
- ↑ Jump up to: 2.0 2.1 Jäger R et al.: Comparison of new forms of creatine in raising plasma creatine levels. J Int Soc Sports Nutr 2007. (PMID 17997838) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 3.0 3.1 3.2 Forbes SC et al.: Effects of Creatine Supplementation on Brain Function and Health. Nutrients 2022. (PMID 35267907) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 Kreider RB & Stout JR: Creatine in Health and Disease. Nutrients 2021. (PMID 33572884) [PubMed] [DOI] [Full text] Abstract
- ↑ Almeida D et al.: Creatine supplementation improves performance, but is it safe? Double-blind placebo-controlled study. J Sports Med Phys Fitness 2020. (PMID 32597619) [PubMed] [DOI] Abstract
- ↑ Jump up to: 6.0 6.1 6.2 6.3 Antonio J et al.: Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show?. J Int Soc Sports Nutr 2021. (PMID 33557850) [PubMed] [DOI] [Full text] Abstract
- ↑ Ribeiro F et al.: Timing of Creatine Supplementation around Exercise: A Real Concern?. Nutrients 2021. (PMID 34445003) [PubMed] [DOI] [Full text] Abstract
- ↑ Candow DG et al.: Creatine O'Clock: Does Timing of Ingestion Really Influence Muscle Mass and Performance?. Front Sports Act Living 2022. (PMID 35669557) [PubMed] [DOI] [Full text] Abstract