2,851
edits
Line 341: | Line 341: | ||
In the context of NAD+ supplementation, apigenin’s involvement with the SIRT1, NAD+, and CD38 axis is particularly notable. It enhances endogenous NAD+ levels by inhibiting CD38 and increasing the activation ratio of SIRT1 and NAD+/NADH, thereby reducing cellular senescence due to oxidative stress{{pmid|34049472}}{{pmid|32507768}}. This strong inhibition of CD38 by apigenin makes it an integral part of strategies aimed at restoring age-related depletion of NAD+ levels, enhancing the effectiveness of NMN supplementation and overall geroprotective strategies. | In the context of NAD+ supplementation, apigenin’s involvement with the SIRT1, NAD+, and CD38 axis is particularly notable. It enhances endogenous NAD+ levels by inhibiting CD38 and increasing the activation ratio of SIRT1 and NAD+/NADH, thereby reducing cellular senescence due to oxidative stress{{pmid|34049472}}{{pmid|32507768}}. This strong inhibition of CD38 by apigenin makes it an integral part of strategies aimed at restoring age-related depletion of NAD+ levels, enhancing the effectiveness of NMN supplementation and overall geroprotective strategies. | ||
=== Carotenoids: Astaxanthin and Lycopene === | |||
Carotenoids like astaxanthin and lycopene are renowned for their antioxidant and anti-inflammatory properties, playing a significant role in health and longevity (Figure 2). | |||
'''Astaxanthin''' is a powerful antioxidant carotenoid known for its ability to mitigate reactive oxygen species (ROS) and support mitochondrial integrity{{pmid|31814873}}. It has shown remarkable efficacy in activating SIRT1, which contributes to its longevity-promoting effects: | |||
* '''Neuroprotection''': Astaxanthin has been demonstrated in vivo to alleviate oxidative stress in brain injury, upregulating Nrf2 and SIRT1 expression while decreasing pro-apoptotic factors, thus potentially reducing the risk of neuronal death{{pmid|33326114}}. | |||
* '''Cardiac and Fibrotic Protection''': It ameliorates the effects of a high-fat diet on cardiac and fibrotic damage through SIRT1 upregulation, inhibition of inflammatory cell mobility, and reduced collagen deposition, leading to less fibrosis post-injury{{pmid|28300638}}{{pmid|34867002}}. | |||
* '''Renal Tissue Protection''': Astaxanthin also protects renal tissue post-injury through SIRT1 upregulation{{pmid|30456546}}. | |||
* '''Boosting NAD+ Levels''': Notably, a study combining NMN, astaxanthin, and blood orange extract in aging zebrafish demonstrated an enhanced ability to raise NAD+ levels, surpassing combinations of NR with astaxanthin or pterostilbene{{doi|10.1093/cdn/nzac047.054}}. This finding suggests astaxanthin's potential in NAD+ boosting strategies and warrants further research on effective dosages and combinations in humans. | |||
'''Lycopene''' is another carotenoid with significant antioxidant and anti-inflammatory effects. It is known for improving various age-related conditions: | |||
* '''Physical Performance and Skin Aging''': Supplementation with lycopene has been shown to enhance physical performance, combat osteoporosis, and improve skin aging, owing to its antioxidant properties{{pmid|26881023}}. | |||
* '''Muscle Angiogenesis and Insulin Resistance''': Lycopene activates SIRT1, which aids in muscle angiogenesis and the reversal of insulin resistance in age-related vascular decline{{pmid|34530111}}. | |||
* '''Combination Therapy with NMN''': In models of D-galactose-induced aging, a combination of NMN and lycopene showed superior results compared to NMN alone. It enhanced antioxidant enzyme activities, demonstrated senolytic abilities, upregulated Nrf2, and improved cognition in vivo{{pmid|35183682}}. | |||
Both astaxanthin and lycopene exhibit promising roles in geroprotective strategies, particularly in enhancing NAD+ levels and SIRT1 activation. Their combined use with NMN or other NAD+ precursors could potentially maximize the efficacy of interventions aimed at boosting NAD+ availability and combating age-related decline. | |||
==Clinical Trials== | ==Clinical Trials== | ||
Starting in 2020, with the assessment of the safety of a single dose administration of NMN, there have been around 10 randomized controlled trials (RCTs) exploring the compound's effects in various contexts. The trials have varied in duration, with the longest running for 12 weeks. In terms of dosage, they have explored a range of quantities, with the highest being 1,250 mg of NMN per day and 2,000 mg (2 g) of MIB-626, a specific formulation of NMN, per day. The following table provides a comprehensive overview of these trials, detailing their design, participant demographics, dosages, and key findings: | Starting in 2020, with the assessment of the safety of a single dose administration of NMN, there have been around 10 randomized controlled trials (RCTs) exploring the compound's effects in various contexts. The trials have varied in duration, with the longest running for 12 weeks. In terms of dosage, they have explored a range of quantities, with the highest being 1,250 mg of NMN per day and 2,000 mg (2 g) of MIB-626, a specific formulation of NMN, per day. The following table provides a comprehensive overview of these trials, detailing their design, participant demographics, dosages, and key findings: |