Jump to content

Nicotinamide Mononucleotide (NMN): Difference between revisions

no edit summary
No edit summary
Line 334: Line 334:
'''[[Fisetin]]''' and '''[[Quercetin|quercetin]]''' are known for their anti-cancer properties, particularly in inducing calcium-induced tumor [[Apoptosis|apoptosis]] and improving cancer-related inflammatory profiles{{pmid|31064104}}. Fisetin, in particular, has shown strong senolytic effects in older and progeroid mice models, as well as in murine and human adipose tissues, contributing to improved lifespan and tissue homeostasis{{pmid|30279143}}. Its safety and efficacy are being investigated in Phase 2 clinical trials focusing on reducing inflammation and improving walking speed in frail elderly individuals (NCT03675724, NCT03430037). Fisetin also interacts with the NAD+/NADH age-related pathway, notably through SIRT1 activation, suggesting potential geroprotective effects in the context of NAD+/SIRT1/CD38 pathways, although more research is needed to establish concrete effects on longevity{{pmid|22493485}}.
'''[[Fisetin]]''' and '''[[Quercetin|quercetin]]''' are known for their anti-cancer properties, particularly in inducing calcium-induced tumor [[Apoptosis|apoptosis]] and improving cancer-related inflammatory profiles{{pmid|31064104}}. Fisetin, in particular, has shown strong senolytic effects in older and progeroid mice models, as well as in murine and human adipose tissues, contributing to improved lifespan and tissue homeostasis{{pmid|30279143}}. Its safety and efficacy are being investigated in Phase 2 clinical trials focusing on reducing inflammation and improving walking speed in frail elderly individuals (NCT03675724, NCT03430037). Fisetin also interacts with the NAD+/NADH age-related pathway, notably through SIRT1 activation, suggesting potential geroprotective effects in the context of NAD+/SIRT1/CD38 pathways, although more research is needed to establish concrete effects on longevity{{pmid|22493485}}.


Quercetin, structurally similar to fisetin, is also recognized as a senolytic agent with benefits in cardiovascular disease, neurodegeneration, inflammation, oxidative stress, cancer, and diabetes management. It is considered a geroprotective agent in in vitro models of premature aging{{pmid|35458696}}{{pmid|30069858}}. Quercetin contributes to the modulation of the NAD+/SIRT1/CD38 axis by altering the NAD+/NADH ratio, activating SIRT1, and inhibiting CD38, thereby impacting metabolic disorders{{pmid|23172919}}{{pmid|33200005}}{{pmid|16395647}}.
Quercetin, structurally similar to fisetin, is also recognized as a senolytic agent with benefits in cardiovascular disease, neurodegeneration, inflammation, oxidative stress, cancer, and diabetes management. It is considered a geroprotective agent in in vitro models of premature aging{{pmid_warn|35458696}}{{pmid_warn|30069858}}. Quercetin contributes to the modulation of the NAD+/SIRT1/CD38 axis by altering the NAD+/NADH ratio, activating SIRT1, and inhibiting CD38, thereby impacting metabolic disorders{{pmid|23172919}}{{pmid|33200005}}{{pmid|16395647}}.


'''Luteolin''' and its derivative '''luteolinidin''' have shown anti-inflammatory effects, particularly in skin aging, skin diseases, and cognitive functions{{pmid|33368702}}. They are implicated in the CD38 mechanism, acting as potent inhibitors and leading to an increase in available NAD+ levels{{pmid|21641214}}{{pmid|28108596}}. Their potential in clearing cellular senescence, especially when used alongside NAD+ supporting compounds, highlights their role in longevity promotion{{pmid|34699859}}.
'''Luteolin''' and its derivative '''luteolinidin''' have shown anti-inflammatory effects, particularly in skin aging, skin diseases, and cognitive functions{{pmid|33368702}}. They are implicated in the CD38 mechanism, acting as potent inhibitors and leading to an increase in available NAD+ levels{{pmid|21641214}}{{pmid|28108596}}. Their potential in clearing cellular senescence, especially when used alongside NAD+ supporting compounds, highlights their role in longevity promotion{{pmid|34699859}}.
Cookies help us deliver our services. By using our services, you agree to our use of cookies.