2,851
edits
m (Strimo moved page Nicotinamide Mononucleotide (β-NMN) to Nicotinamide Mononucleotide (NMN) over redirect) |
No edit summary |
||
Line 300: | Line 300: | ||
===Stilbenes: Resveratrol and Pterostilbene=== | ===Stilbenes: Resveratrol and Pterostilbene=== | ||
Stilbenes, particularly [[Resveratrol|resveratrol]] and [[Pterostilbene|pterostilbene]], are non-flavonoid phenolic compounds extensively studied for their anti-inflammatory, antioxidant properties, and their role in combating age-related disorders like diabetes and cancer{{pmid|23448440}}{{doi|10.7324/JAPS.2019.90717|Chan EWC, Wong CW, Tan YH, Foo JPY, Wong SK, Chan HT. Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J Appl Pharm Sci, 2019; 9(07):124–129.}}. They are found naturally in grapes and berries, and studies have established their safety and bioavailability, with doses of resveratrol up to 5 grams and pterostilbene to 250 mg being well-tolerated{{pmid|23431291}}{{pmid|30513922}}. | Stilbenes, particularly [[Resveratrol|resveratrol]] and [[Pterostilbene|pterostilbene]], are non-flavonoid phenolic compounds extensively studied for their anti-inflammatory, [[Antioxidant|antioxidant]] properties, and their role in combating age-related disorders like diabetes and cancer{{pmid|23448440}}{{doi|10.7324/JAPS.2019.90717|Chan EWC, Wong CW, Tan YH, Foo JPY, Wong SK, Chan HT. Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J Appl Pharm Sci, 2019; 9(07):124–129.}}. They are found naturally in grapes and berries, and studies have established their safety and bioavailability, with doses of resveratrol up to 5 grams and pterostilbene to 250 mg being well-tolerated{{pmid|23431291}}{{pmid|30513922}}. | ||
Despite their potential, resveratrol and pterostilbene have shown lifespan extension only in certain preclinical models, with the results being context-dependent and subject to debate{{pmid|29210129}}. Pterostilbene is particularly notable for its higher bioavailability (80%) compared to resveratrol (20%), and its efficacy in upregulating antioxidant enzymes like SOD and GR{{pmid|23691264}}. This difference in bioavailability is critical in modulating the SIRT1 pathway, with co-administration of the two potentially maximizing their collective benefits{{pmid|18826454}}. | Despite their potential, resveratrol and pterostilbene have shown lifespan extension only in certain preclinical models, with the results being context-dependent and subject to debate{{pmid|29210129}}. Pterostilbene is particularly notable for its higher bioavailability (80%) compared to resveratrol (20%), and its efficacy in upregulating antioxidant enzymes like SOD and GR{{pmid|23691264}}. This difference in bioavailability is critical in modulating the SIRT1 pathway, with co-administration of the two potentially maximizing their collective benefits{{pmid|18826454}}. | ||
Line 313: | Line 313: | ||
=== CoQ10 === | === CoQ10 === | ||
[[Coenzyme Q10 (CoQ10)]], also known as ubiquinol in its oxidized form, ubiquinone, is a crucial component in the mitochondrial electron transport chain. Its role in cellular energy production and as an antioxidant makes it integral to health, particularly in the context of neurodegenerative disorders, diabetes, cancer, fibrosis, and cardiovascular diseases{{pmid|25126052}}. CoQ10 supplementation, especially in disease states, is aimed at restoring antioxidant activity to correct homeostatic imbalances{{pmid|24389208}}. | [[Coenzyme Q10 (CoQ10)]], also known as ubiquinol in its oxidized form, ubiquinone, is a crucial component in the mitochondrial electron transport chain. Its role in cellular energy production and as an [[Antioxidant|antioxidant]] makes it integral to health, particularly in the context of neurodegenerative disorders, diabetes, cancer, fibrosis, and cardiovascular diseases{{pmid|25126052}}. CoQ10 supplementation, especially in disease states, is aimed at restoring antioxidant activity to correct homeostatic imbalances{{pmid|24389208}}. | ||
CoQ10's cardiovascular protective qualities are well-established, with evidence showing its ability to improve hyperglycemia, hypertension, oxidative stress, and reduce the risk of cardiac events{{pmid|32331285}}. Notably, endogenous synthesis of CoQ10 declines with age, and higher mitochondrial levels have been linked to increased longevity. This connection is particularly evident in skeletal muscle health in the elderly, where higher plasma CoQ10 content correlates with improved muscle integrity and reduced levels of inflammatory markers such as TNF-α, IL-6, and CRP{{pmid|29459830}}. | CoQ10's cardiovascular protective qualities are well-established, with evidence showing its ability to improve hyperglycemia, hypertension, oxidative stress, and reduce the risk of cardiac events{{pmid|32331285}}. Notably, endogenous synthesis of CoQ10 declines with age, and higher mitochondrial levels have been linked to increased longevity. This connection is particularly evident in skeletal muscle health in the elderly, where higher plasma CoQ10 content correlates with improved muscle integrity and reduced levels of inflammatory markers such as TNF-α, IL-6, and CRP{{pmid|29459830}}. | ||
Line 341: | Line 341: | ||
'''Luteolin''' and its derivative '''luteolinidin''' have shown anti-inflammatory effects, particularly in skin aging, skin diseases, and cognitive functions{{pmid|33368702}}. They are implicated in the CD38 mechanism, acting as potent inhibitors and leading to an increase in available NAD+ levels{{pmid|21641214}}{{pmid|28108596}}. Their potential in clearing cellular senescence, especially when used alongside NAD+ supporting compounds, highlights their role in longevity promotion{{pmid|34699859}}. | '''Luteolin''' and its derivative '''luteolinidin''' have shown anti-inflammatory effects, particularly in skin aging, skin diseases, and cognitive functions{{pmid|33368702}}. They are implicated in the CD38 mechanism, acting as potent inhibitors and leading to an increase in available NAD+ levels{{pmid|21641214}}{{pmid|28108596}}. Their potential in clearing cellular senescence, especially when used alongside NAD+ supporting compounds, highlights their role in longevity promotion{{pmid|34699859}}. | ||
'''[[Apigenin]]''', derived from parsley and chamomile, exhibits strong anti-inflammatory, antioxidant, and anti-carcinogenic properties. It reduces inflammatory mediators like COX2, IL6, and TNF-α{{pmid|26180592}}, and upregulates antioxidant enzymes such as SOD, GPX, and GR{{doi|10.1080/10942912.2016.1207188}}. Apigenin's anti-cancer activity is evident in its ability to downregulate key cancer pathways and sensitize tumor cells to chemotherapy{{pmid|33333052}}. It also attenuates metabolic complications and possesses anti-obesity effects{{pmid|34679777}}{{pmid|28971573}}{{pmid|31877350}}. Additionally, apigenin improves vascular endothelial function and structure, counteracting age-related changes due to oxidative stress{{pmid|34114892}}. | '''[[Apigenin]]''', derived from parsley and chamomile, exhibits strong anti-inflammatory, [[Antioxidant|antioxidant]], and anti-carcinogenic properties. It reduces inflammatory mediators like COX2, IL6, and TNF-α{{pmid|26180592}}, and upregulates antioxidant enzymes such as SOD, GPX, and GR{{doi|10.1080/10942912.2016.1207188}}. Apigenin's anti-cancer activity is evident in its ability to downregulate key cancer pathways and sensitize tumor cells to chemotherapy{{pmid|33333052}}. It also attenuates metabolic complications and possesses anti-obesity effects{{pmid|34679777}}{{pmid|28971573}}{{pmid|31877350}}. Additionally, apigenin improves vascular endothelial function and structure, counteracting age-related changes due to oxidative stress{{pmid|34114892}}. | ||
In the context of NAD+ supplementation, apigenin’s involvement with the SIRT1, NAD+, and CD38 axis is particularly notable. It enhances endogenous NAD+ levels by inhibiting CD38 and increasing the activation ratio of SIRT1 and NAD+/NADH, thereby reducing cellular senescence due to oxidative stress{{pmid|34049472}}{{pmid|32507768}}. This strong inhibition of CD38 by apigenin makes it an integral part of strategies aimed at restoring age-related depletion of NAD+ levels, enhancing the effectiveness of NMN supplementation and overall geroprotective strategies. | In the context of NAD+ supplementation, apigenin’s involvement with the SIRT1, NAD+, and CD38 axis is particularly notable. It enhances endogenous NAD+ levels by inhibiting CD38 and increasing the activation ratio of SIRT1 and NAD+/NADH, thereby reducing cellular senescence due to oxidative stress{{pmid|34049472}}{{pmid|32507768}}. This strong inhibition of CD38 by apigenin makes it an integral part of strategies aimed at restoring age-related depletion of NAD+ levels, enhancing the effectiveness of NMN supplementation and overall geroprotective strategies. | ||
=== Carotenoids: Astaxanthin and Lycopene === | === Carotenoids: Astaxanthin and Lycopene === | ||
Carotenoids like astaxanthin and lycopene are renowned for their antioxidant and anti-inflammatory properties, playing a significant role in health and longevity (Figure 2). | Carotenoids like astaxanthin and lycopene are renowned for their [[Antioxidant|antioxidant]] and anti-inflammatory properties, playing a significant role in health and longevity (Figure 2). | ||
'''Astaxanthin''' is a powerful antioxidant carotenoid known for its ability to mitigate reactive oxygen species (ROS) and support mitochondrial integrity{{pmid|31814873}}. It has shown remarkable efficacy in activating SIRT1, which contributes to its longevity-promoting effects: | '''Astaxanthin''' is a powerful antioxidant carotenoid known for its ability to mitigate reactive oxygen species (ROS) and support mitochondrial integrity{{pmid|31814873}}. It has shown remarkable efficacy in activating SIRT1, which contributes to its longevity-promoting effects: | ||
Line 355: | Line 355: | ||
* '''Boosting NAD+ Levels''': Notably, a study combining NMN, astaxanthin, and blood orange extract in aging zebrafish demonstrated an enhanced ability to raise NAD+ levels, surpassing combinations of NR with astaxanthin or pterostilbene{{doi|10.1093/cdn/nzac047.054}}. This finding suggests astaxanthin's potential in NAD+ boosting strategies and warrants further research on effective dosages and combinations in humans. | * '''Boosting NAD+ Levels''': Notably, a study combining NMN, astaxanthin, and blood orange extract in aging zebrafish demonstrated an enhanced ability to raise NAD+ levels, surpassing combinations of NR with astaxanthin or pterostilbene{{doi|10.1093/cdn/nzac047.054}}. This finding suggests astaxanthin's potential in NAD+ boosting strategies and warrants further research on effective dosages and combinations in humans. | ||
'''Lycopene''' is another carotenoid with significant antioxidant and anti-inflammatory effects. It is known for improving various age-related conditions: | '''Lycopene''' is another carotenoid with significant [[Antioxidant|antioxidant]] and anti-inflammatory effects. It is known for improving various age-related conditions: | ||
* '''Physical Performance and Skin Aging''': Supplementation with lycopene has been shown to enhance physical performance, combat osteoporosis, and improve skin aging, owing to its antioxidant properties{{pmid|26881023}}. | * '''Physical Performance and Skin Aging''': Supplementation with lycopene has been shown to enhance physical performance, combat osteoporosis, and improve skin aging, owing to its antioxidant properties{{pmid|26881023}}. | ||
Line 370: | Line 370: | ||
* '''Cardiovascular Health''': Curcumin's impact on cardiovascular health is highlighted by its ability to activate AMPK, another significant pathway in aging and metabolic regulation{{pmid|30145851}}. | * '''Cardiovascular Health''': Curcumin's impact on cardiovascular health is highlighted by its ability to activate AMPK, another significant pathway in aging and metabolic regulation{{pmid|30145851}}. | ||
* '''Anti-cancer Properties''': Experimental models of head and neck squamous cell carcinoma have shown that curcumin can inhibit cancer cell migration and angiogenesis, underscoring its anti-cancer potential{{pmid|26299580}}. | * '''Anti-cancer Properties''': Experimental models of head and neck squamous cell carcinoma have shown that curcumin can inhibit cancer cell migration and angiogenesis, underscoring its anti-cancer potential{{pmid|26299580}}. | ||
* '''Physical Performance''': A six-week supplementation with curcumin in human runners has led to improvements in antioxidant capacity and aerobic performance. This benefit is accompanied by an increase in SIRT3, a mitochondrial protein linked to energy metabolism{{pmid|36125053}}. | * '''Physical Performance''': A six-week supplementation with curcumin in human runners has led to improvements in [[Antioxidant|antioxidant]] capacity and aerobic performance. This benefit is accompanied by an increase in SIRT3, a mitochondrial protein linked to energy metabolism{{pmid|36125053}}. | ||
The relationship between curcumin and sirtuins, particularly in the context of NAD+ boosting, is a promising area of research. However, the effectiveness of combining curcumin with NAD+ enhancing supplements needs to be explored further in clinical trials. Such studies would help establish whether curcumin can augment the benefits of NAD+ precursors, potentially leading to more effective anti-aging therapies. | The relationship between curcumin and sirtuins, particularly in the context of NAD+ boosting, is a promising area of research. However, the effectiveness of combining curcumin with NAD+ enhancing supplements needs to be explored further in clinical trials. Such studies would help establish whether curcumin can augment the benefits of NAD+ precursors, potentially leading to more effective anti-aging therapies. | ||
Line 376: | Line 376: | ||
Alpha-ketoglutarate (aKG) is a critical metabolic intermediate in the Krebs cycle, playing an important role in the aging process{{pmid|32877686}}. Its involvement in various longevity-related mechanisms makes it a significant compound in geroprotection and anti-aging research. | Alpha-ketoglutarate (aKG) is a critical metabolic intermediate in the Krebs cycle, playing an important role in the aging process{{pmid|32877686}}. Its involvement in various longevity-related mechanisms makes it a significant compound in geroprotection and anti-aging research. | ||
*'''Inhibition of the TOR Pathway''': aKG is known to inhibit the TOR pathway, akin to the effects of caloric restriction. This inhibition, coupled with its ability to hinder ATP synthase, has been shown to extend the lifespan in ''C. elegans''{{pmid|24828042}}. | *'''Inhibition of the TOR Pathway''': aKG is known to inhibit the TOR pathway, akin to the effects of caloric restriction. This inhibition, coupled with its ability to hinder ATP synthase, has been shown to extend the lifespan in ''C. elegans''{{pmid|24828042}}. | ||
*'''Metabolic and Antioxidant Benefits''': Providing both metabolic and antioxidant benefits, aKG has been demonstrated to extend lifespan. This effect is evident not only in model organisms but also in mice. Recent pilot clinical trials have indicated that Rejuvant, a novel formulation of aKG, effectively reduces biological age in humans{{pmid|33340716}}{{pmid|34847066}}{{pmid|32877690}}. | *'''Metabolic and Antioxidant Benefits''': Providing both metabolic and [[Antioxidant|antioxidant]] benefits, aKG has been demonstrated to extend lifespan. This effect is evident not only in model organisms but also in mice. Recent pilot clinical trials have indicated that Rejuvant, a novel formulation of aKG, effectively reduces biological age in humans{{pmid|33340716}}{{pmid|34847066}}{{pmid|32877690}}. | ||
*'''Interplay with NAD+''': The relationship between aKG and NAD+, a vital coenzyme for cellular health and aging, remains under-researched. Future studies should explore this interaction to enhance our understanding of how aKG can be utilized in longevity therapies. | *'''Interplay with NAD+''': The relationship between aKG and NAD+, a vital coenzyme for cellular health and aging, remains under-researched. Future studies should explore this interaction to enhance our understanding of how aKG can be utilized in longevity therapies. | ||
The potential of aKG in anti-aging strategies is promising, but more research is necessary to fully understand its interactions, particularly with NAD+. | The potential of aKG in anti-aging strategies is promising, but more research is necessary to fully understand its interactions, particularly with NAD+. | ||
===Epigallocatechin Gallate=== | ===Epigallocatechin Gallate=== | ||
The polyphenol epigallocatechin gallate (EGCG; Figure 2), predominantly found in green tea, is renowned for its neuroprotective, antioxidant, and anti-inflammatory properties. Current research is investigating its role in alleviating a variety of diseases{{pmid|35327563}}. EGCG's interaction with aging and longevity pathways is particularly noteworthy. | The polyphenol epigallocatechin gallate (EGCG; Figure 2), predominantly found in green tea, is renowned for its neuroprotective, [[Antioxidant|antioxidant]], and anti-inflammatory properties. Current research is investigating its role in alleviating a variety of diseases{{pmid|35327563}}. EGCG's interaction with aging and longevity pathways is particularly noteworthy. | ||
*'''Lifespan Extension''': EGCG has been shown to increase lifespan in response to oxidative stress, as evidenced by studies in rats demonstrating enhanced longevity under such conditions{{pmid|23834676}}. | *'''Lifespan Extension''': EGCG has been shown to increase lifespan in response to oxidative stress, as evidenced by studies in rats demonstrating enhanced longevity under such conditions{{pmid|23834676}}. | ||
*'''SIRT1 Modulation''': The effect of EGCG on SIRT1, a crucial protein in aging and metabolism, appears to vary depending on the context. Some studies have observed an upregulation of SIRT1 following EGCG administration{{pmid|33371812}}, while others have reported a downregulation, especially in cancer cells{{pmid|23881751}}{{pmid|35548580}}. This suggests that EGCG's impact on SIRT1 may differ based on specific biological factors and the need for upregulation of longevity pathways in response to oxidative stress. | *'''SIRT1 Modulation''': The effect of EGCG on SIRT1, a crucial protein in aging and metabolism, appears to vary depending on the context. Some studies have observed an upregulation of SIRT1 following EGCG administration{{pmid|33371812}}, while others have reported a downregulation, especially in cancer cells{{pmid|23881751}}{{pmid|35548580}}. This suggests that EGCG's impact on SIRT1 may differ based on specific biological factors and the need for upregulation of longevity pathways in response to oxidative stress. |