2,851
edits
No edit summary |
|||
Line 22: | Line 22: | ||
Resveratrol is one of the most well-known and studied SIRT1 Activating Compounds (STACs). It is a natural polyphenolic compound found in grapes, berries, peanuts, and red wine. Resveratrol mimics the effects of caloric restriction by modulating the same pathways and has shown to confer protective effects against various diseases, including cardiovascular and neurodegenerative diseases. | Resveratrol is one of the most well-known and studied SIRT1 Activating Compounds (STACs). It is a natural polyphenolic compound found in grapes, berries, peanuts, and red wine. Resveratrol mimics the effects of caloric restriction by modulating the same pathways and has shown to confer protective effects against various diseases, including cardiovascular and neurodegenerative diseases. | ||
In addition to resveratrol, several other synthetic and natural STACs have been identified, such as SRT1720, SRT2104, and quercetin. These compounds have demonstrated the potential to enhance SIRT1 activity, modulate metabolic processes, and extend lifespan in various animal models. The translational potential of these compounds, including resveratrol, to human health and longevity remains to be fully elucidated, with ongoing studies aimed at understanding their efficacy, optimal dosages, and mechanisms of action. | In addition to resveratrol, several other synthetic and natural STACs have been identified, such as SRT1720, SRT2104, and [[Quercetin|quercetin]]. These compounds have demonstrated the potential to enhance SIRT1 activity, modulate metabolic processes, and extend lifespan in various animal models. The translational potential of these compounds, including resveratrol, to human health and longevity remains to be fully elucidated, with ongoing studies aimed at understanding their efficacy, optimal dosages, and mechanisms of action. | ||
==== NAD+ Precursors ==== | |||
SIRT1 activity is closely linked to the cellular levels of [[NAD+]], a critical coenzyme involved in cellular metabolism and energy production. Increasing NAD+ levels through supplementation with its precursors, such as [[Nicotinamide Riboside (NR)|nicotinamide riboside (NR)]] and [[Nicotinamid Mononukleotid (NMN)|nicotinamide mononucleotide (NMN)]], has been shown to activate SIRT1, potentially mitigating age-related decline in cellular function and metabolism. | |||
==== Caloric Restriction ==== | ==== Caloric Restriction ==== | ||
Caloric restriction, without malnutrition, is known to be one of the most effective interventions to activate SIRT1, and thereby promote longevity and healthspan. This restriction in calorie intake induces an energy-deprived state, leading to the activation of AMP-activated protein kinase (AMPK), which subsequently activates SIRT1, fostering improved cellular metabolism, stress resistance, and reduced inflammation | [[Caloric Restriction|Caloric restriction]], without malnutrition, is known to be one of the most effective interventions to activate SIRT1, and thereby promote longevity and healthspan. This restriction in calorie intake induces an energy-deprived state, leading to the activation of AMP-activated protein kinase (AMPK), which subsequently activates SIRT1, fostering improved cellular metabolism, stress resistance, and reduced inflammation. | ||
==== Exercise ==== | ==== Exercise ==== | ||
Line 37: | Line 34: | ||
==== Fasting and Intermittent Fasting ==== | ==== Fasting and Intermittent Fasting ==== | ||
Fasting and intermittent fasting, like caloric restriction, create an energy-deprived state that leads to the activation of SIRT1. These dietary strategies have been shown to enhance SIRT1 activity, contributing to improvements in cellular health, metabolism, and longevity. | Fasting and [[Interval Fasting|intermittent fasting]], like caloric restriction, create an energy-deprived state that leads to the activation of SIRT1. These dietary strategies have been shown to enhance SIRT1 activity, contributing to improvements in cellular health, metabolism, and longevity. |