User:Strimo/ModuleTest
Hello, World! [1]
Table 1
Estimation Method | MLR | MLR | MLR | MLR | MLR | PCA | MLR | PCA | PCA | PCA | PCA | PCA | PCA | MLR | PCA | PCA | PCA | KDM | MLR | PCA | KDM | MLR | PCA | MLR | PCA | PCA | KDM | Deep learning | KDM | KDM | MLR | PCA | PCA | PCA | KDM | KDM | Deep learning | Deep learning | KDM | MLR | PCA | KDM | KDM | MLR | PCA | KDM | KDM | KDM | KDM | Deep learning | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | 1965 | 1976 | 1982 | 1983 | 1984 | 1988 | 1988 | 1989 | 1990 | 1996 | 2003 | 2003 | 2007 | 2008 | 2008 | 2009 | 2010 | 2010 | 2010 | 2012 | 2013 | 2013 | 2013 | 2013 | 2014 | 2014 | 2015 | 2016 | 2016 | 2017 | 2017 | 2017 | 2017 | 2017 | 2018 | 2018 | 2018 | 2019 | 2019 | 2019 | 2019 | 2019 | 2020 | 2020 | 2020 | 2020 | 2020 | 2020 | 2021 | 2021 | ||
Biomarker Count | 7 | 7 | 4 | 8 | 3 | 10 | 10 | 7 | 9 | 8 | 9 | 5 | 5 | 16 | 5 | 11 | 7 | 10 | 10 | 7 | 10 | 10 | 9 | 33 | 6 | 6 | 10 | 10 | 10 | 7 | 8 | 8 | 5 | 5 | 8 | 7 | 19 | 4 | 5 | 6 | 6 | 12 | 10 | 10 | 10 | 11 | 10 | 12 | 7 | 33 | ||
System | Biomarker | Count | [2] | [3] | [4] | [5] | [6] | [7] | [7] | [8] | [9] | [10] | [11] | [12] | [13] | [14] | [15] | [16] | [1] | [17] | [17] | [18] | [19] | [19] | [19] | [20] | [21] | [22] | [23] | [24] | [25] | [26] | [26] | [26] | [27] | [28] | [29] | [30] | [31] | [32] | [33] | [33] | [33] | [34] | [35] | [35] | [35] | [36] | [37] | [38] | [39] | [40] |
Cardiovascular System | Systolic Blood Pressure (SBP) | 32 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||
Cardiovascular System | Diastolic Blood Pressure (DBP) | 6 | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Pulse Pressure | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Mean Arterial Pressure | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Pulse | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Pulse Wave Velocity | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Heart Rate | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Intima-Media Thickness | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Minimum Intima-Media Thickness | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | End Diastolic Velocity | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Mitral Valve E/A Peak | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | MVEL, MVES, MVEA | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Atherosclerosis Index | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | NT-proBNP | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Cardiac Troponin I | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Creatine Phosphokinase | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Cardiovascular System | Homocysteine | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Respiratory System | Forced Vital Capacity (FVC) | 10 | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||
Respiratory System | Forced Expiratory Volume in 1 Second (FEV1) | 25 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||
Respiratory System | Vital Capacity | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Respiratory System | Maximal Midexpiratory Flow Rate 75/25 | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Respiratory System | VO2 Max | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Mini-Mental State Examination (MMSE) | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Digital Symbol Test | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Numeric Memory | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Associated Memory | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Topological Memory | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Short-Time Memory | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Concentration | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Intellectuality - Mental Defect | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Nervous System | Trail Making Test | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Glucose | 10 | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | HBA1C | 13 | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | C-peptide | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Insulin | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Triglyceride | 8 | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Total Cholesterol (TC) | 22 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||
Endocrine Metabolic System | High-Density Lipoprotein (HDL) | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Low-Density Lipoprotein (LDL) | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Apolipoprotein A1 and B | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Thyroid-Stimulating Hormone (TSH) | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Testosterone | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Vitamin D | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Calcium | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Potassium | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Sodium | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Inorganic Phosphorus | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Urea | 26 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||
Endocrine Metabolic System | Creatinine | 18 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Estimated Glomerular Filtration Rate (eGFR) | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Uric Acid | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Cystatin C | 5 | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Creatinine Clearance | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Urine Specific Gravity | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Endocrine Metabolic System | Urine pH | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Alanine Aminotransferase (ALT) | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Aspartate Aminotransferase (AST) | 9 | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||
Digestive System | Alkaline Phosphatase (ALP) | 12 | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||
Digestive System | Total Protein | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Albumin | 21 | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||
Digestive System | Albumin/Globulin Ratio (A/G) | 5 | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Total Bilirubin | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Direct Bilirubin | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Amylase | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Lactate Dehydrogenase | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Alpha 2 Globulin | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Digestive System | Gamma Glutamyl Transpeptidase | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Red Blood Cell | 9 | x | x | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||
Hematologic System | Red Blood Cell Volume Distribution Width | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Hematocrit | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Mean Corpuscular Volume | 5 | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Mean Corpuscular Hemoglobin | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Mean Corpuscular Hemoglobin Concentration | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Hemoglobin | 12 | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||
Hematologic System | White Blood Cell | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Granulocytes | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Neutrophils | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Basophils, Eosinophils | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Lymphocytes | 5 | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Monocytes | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Platelet | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Mean Platelet Volume | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Platelet Distribution Width | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Erythrocyte Sedimentation Rate | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | D-dimer, Fibrinogen | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Ferritin | 5 | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||
Hematologic System | Transferrin | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Sensory System | Visual Accommodation | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Sensory System | Visual Reaction Time | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Sensory System | Visual Acuity | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Sensory System | Hearing | 6 | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||
Sensory System | Vibrotactile | 4 | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||||||
Inflammatory System | C-Reactive Protein (CRP) | 12 | x | x | x | x | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||
Inflammatory System | Cytomegalovirus Optical Density | 5 | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||
Inflammatory System | Interleukin-6 | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Inflammatory System | P-selectin | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Motion Index | Grip Strength | 8 | x | x | x | x | x | x | x | x | ||||||||||||||||||||||||||||||||||||||||||
Motion Index | Vertical Jump | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Motion Index | Timed Up and Go Test | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Motion Index | Chair Rise Time | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Waist Circumference (WC) | 7 | x | x | x | x | x | x | x | |||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Waist-to-Hip Ratio | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Waist-to-Height Ratio | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Body Mass Index (BMI) | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Weight | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Height | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Body Fat | 3 | x | x | x | |||||||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Lean Body Mass | 2 | x | x | ||||||||||||||||||||||||||||||||||||||||||||||||
Body Morphology Index | Soft Lean Mass | 1 | x | |||||||||||||||||||||||||||||||||||||||||||||||||
Genetic Index | Terminal Telomere Restriction Fragment | 1 | x |
Table 3
Biomarker Key | MLR | PCA | KDM | Deep learning |
---|---|---|---|---|
SBP | 23213031 5841151 3226152 950448 6667707 17889950 23642770 28110151 30899733 | 23213031 3226152 2737197 2282902 8803500 12634284 12672981 17921421 18840798 18597867 22433233 28110151 30899733 | 23213031 26150497 28110151 28958059 28977464 30999227 30899733 31566204 32946548 34038024 | |
DBP | 17889950 23642770 31179487 | 31179487 | 27216811 31179487 | |
PP | 23642770 | 29188884 24522464 19940465 | ||
MAP | 28203066 | |||
Pulse | 3226152 | 3226152 2737197 | ||
PWV | 6667707 | |||
HR | 2282902 | |||
IMT | 24659482 19940465 | |||
MinIMT | 29188884 24522464 | |||
EDV | 19940465 | |||
MVEAP | 29188884 19940465 | |||
MVEL_MVES_MVEA | MVEL 19940465 MVES 24522464 MVEA 24659482 | |||
AI | 2737197 2282902 | |||
NTproBNP | 34453631 | |||
CTnI | 34453631 | |||
CPK | 23642770 | |||
Homocysteine | 23642770 | |||
FVC | 3226152 17889950 23642770 20005245 | 3226152 2737197 2282902 8803500 12634284 | 20005245 | |
FEV1 | 23213031 950448 7162237 17889950 23642770 28110151 30899733 31179487 | 23213031 12634284 12672981 17921421 18840798 18597867 22433233 28110151 30899733 31179487 | 23213031 26150497 28110151 28958059 28977464 30899733 31179487 | |
VC | 5841151 6667707 | |||
MMFR | 24522464 | |||
VO2Max | 18597867 22433233 | |||
CR | 33744131 | |||
MMSE | 31179487 | 31179487 | 31179487 | |
DST | 6667707 | 24659482 | ||
NM | 20005245 | 20005245 | ||
AM | 20005245 | 20005245 | ||
TM | 20005245 | 20005245 | ||
STM | 6610563 | |||
Concentration | 20005245 | 20005245 | ||
IMD | 6667707 | |||
TMT | 29188884 24522464 | |||
Glucose | 17889950 23642770 | 8803500 12672981 28203066 | 28977464 | 27191382 29340580 30644411 34453631 |
HBA1C | 23213031 23642770 | 23213031 18597867 | 23213031 26150497 28958059 30999227 31566204 32946548 31693736 34038024 | 30644411 |
CPeptide | 34453631 | |||
Insulin | 34453631 | |||
TG | 950448 17889950 23642770 | 2282902 28203066 | 32946548 | 29340580 34453631 |
TC | 23213031 5841151 3226152 950448 7162237 17889950 23642770 28110151 | 23213031 3226152 8803500 28110151 | 23213031 26150497 28110151 28958059 28977464 31566204 32946548 34038024 | 27191382 29340580 |
HDL | 17889950 | 28203066 | 29340580 34453631 | |
LDL | 23642770 | 18597867 | 29340580 34453631 | |
ApoA1B | 34453631 | |||
TSH | 17889950 | 27216811 | ||
Testosterone | 17889950 | 34453631 | ||
VitaminD | 30899733 | 30899733 | 30899733 | 34453631 |
Calcium | 27216811 | 29340580 | ||
Potassium | 29340580 | |||
Sodium | 29340580 | |||
InorganicPhosphorus | 27216811 | |||
Urea | 23213031 3226152 950448 23642770 28110151 | 23213031 3226152 2737197 2282902 8803500 12634284 17921421 18840798 18597867 28110151 | 23213031 26150497 27216811 28110151 30999227 31566204 32946548 31693736 | 27191382 29340580 30644411 |
Creatinine | 23213031 17889950 23642770 28110151 30899733 | 28110151 30899733 | 23213031 26150497 27216811 28958059 30999227 31566204 32946548 31693736 34038024 | 29340580 34453631 |
eGFR | 31179487 | 31179487 | 31179487 | |
UricAcid | 30999227 31693736 | 34453631 | ||
CystatinC | 29188884 24659482 24522464 19940465 | 34453631 | ||
CreatinineClearance | 23642770 | |||
UrineSG | 23642770 | |||
UrinepH | 23642770 | |||
ALT | 23642770 | 8803500 | 34453631 | |
AST | 3226152 23642770 28110151 | 3226152 2737197 2282902 28110151 | 28110151 | 34453631 |
ALP | 23213031 950448 23642770 | 23213031 | 23213031 26150497 27216811 28958059 30999227 31693736 34038024 | 27191382 |
TotalProtein | 23642770 | 27216811 | 29340580 | |
Albumin | 23213031 3226152 23642770 | 23213031 3226152 12634284 17921421 18840798 18597867 | 23213031 26150497 27216811 28958059 30999227 31566204 32946548 31693736 34038024 | 27191382 29340580 34453631 |
AGRatio | 3226152 23642770 | 3226152 12634284 12672981 | ||
TotalBilirubin | 23642770 | 29340580 | ||
DirectBilirubin | 23642770 | |||
Amylase | 23642770 | |||
LDH | 7162237 23642770 | 2282902 8803500 | ||
Alpha2Globulin | 27191382 | |||
GGT | 23642770 | |||
RBC | 30899733 | 12634284 18840798 30899733 | 30899733 32946548 | 27191382 29340580 34453631 |
RDW | 30999227 | 27191382 34453631 | ||
Hematocrit | 12634284 17921421 | 27191382 29340580 | ||
MCV | 30999227 31566204 31693736 | 29340580 34453631 | ||
MCH | 12672981 | |||
MCHC | 29340580 34453631 | |||
Hemoglobin | 3226152 31179487 | 3226152 2737197 2282902 8803500 12634284 31179487 | 27216811 31179487 | 29340580 34453631 |
WBC | 30999227 31566204 31693736 | 34453631 | ||
Granulocytes | 34453631 | |||
Neutrophils | 34453631 | |||
BasophilsEosinophils | 34453631 34453631 | |||
Lymphocytes | 30999227 31566204 31693736 | 27191382 34453631 | ||
Monocytes | 31179487 | 31179487 | 31179487 | 34453631 |
Platelet | 32946548 | 29340580 34453631 | ||
MPV | 34453631 | |||
PDW | 34453631 | |||
ESR | 950448 17889950 | 18597867 | ||
DdimerFibrinogen | 24659482 19940465 | 34453631 | ||
Ferritin | 28110151 | 28110151 | 28110151 32946548 | 30644411 |
Transferrin | 32946548 | |||
VisualAcc | 6667707 20005245 | 20005245 | ||
VisualReactTime | 20005245 | 20005245 | ||
VisualAcuity | 5841151 3226152 | 3226152 | ||
Hearing | 5841151 7162237 6667707 20005245 | 18597867 | 20005245 | |
Vibrotactile | 5841151 6610563 20005245 | 20005245 | ||
RetinalPhotos | ||||
CRP | 23213031 | 23213031 | 23213031 26150497 28958059 28977464 30999227 31566204 32946548 31693736 34038024 | 34453631 |
CMVOptDensity | 23213031 | 23213031 | 23213031 26150497 31566204 | |
IL6 | 28977464 | |||
Pselectin | 28977464 | |||
GripStrength | 5841151 6610563 31179487 20005245 | 22433233 31179487 | 31179487 20005245 | |
VerticalJump | 22433233 | |||
TUGTest | 31179487 | 31179487 | 31179487 | |
ChairRiseTime | 31179487 | 31179487 | 31179487 | |
PhysicalActivityWeek | 29581467 31388024 | |||
WC | 23642770 28110151 | 18597867 22433233 28110151 28203066 | 28110151 | |
WaistHipRatio | 17889950 23642770 | |||
WaistHeightRatio | 30899733 | 30899733 | 30899733 | |
BMI | 17889950 23642770 | |||
Weight | 6667707 | |||
Height | 31179487 | 31179487 | 31179487 | |
BodyFat | 17889950 23642770 | 18597867 | ||
LeanBodyMass | 17889950 23642770 | |||
SoftLeanMass | 22433233 | |||
TelomereLength | 24659482 |
Table 2
Assessment methods | Researchers | Year | Country | Sample size | Age range | Population | Aging biomarkers (Candidate → Final) |
---|---|---|---|---|---|---|---|
MLR | Hollingsworth JW et al.:1965, Correlations between tests of aging in Hiroshima subjects--an attempt to define "physiologic age" [2] | 1965 | Japan | 169 Males
268 Females |
10–70+ years | General population | 17 → 9 |
MLR | Webster IW & Logie AR:1976, A relationship between functional age and health status in female subjects [3] | 1976 | Australia | 1,080 Females | 21–83 years | General population | 37 → 7 |
MLR | Takeda H et al.:1982, Evaluation of biological age and physical age by multiple regression analysis [4] | 1982 | Japan | 200 Males | 20–69 years | Healthy population | 10 → 5 |
MLR | Voitenko VP & Tokar AV:1983, The assessment of biological age and sex differences of human aging [5] | 1983 | Soviet Union | 88 Males
109 Females |
19–73 years | General population | 122 → 11 |
MLR | Dubina TL et al.:1984, Biological age and its estimation. III. Introduction of a correction to the multiple regression model of biological age in cross-sectional and longitudinal studies [6] | 1984 | Soviet Union | 100 Males
63 Females |
60–100 years | Healthy population | 21 → 3 |
MLR /PCA | Nakamura E et al.:1988, Assessment of biological age by principal component analysis [7] | 1988 | Japan | 462 Males | 30–80 years | Healthy population | 30 → 11 |
PCA | Nakamura E et al.:1989, Biological age versus physical fitness age [8] | 1989 | Japan | 69 Males | Average 42.6 ± 9.4
years |
Healthy population | 18 → 7 |
PCA | Nakamura E et al.:1990, Biological age versus physical fitness age in women [9] | 1990 | Japan | 65 Females | 20–64 years | Healthy population | 18 → 9 |
PCA | Nakamura E et al.:1996, Effects of habitual physical exercise on physiological age in men aged 20-85 years as estimated using principal component analysis [10] | 1996 | Japan | 221 Males | 20–85 years | Healthy population | 17 → 8 |
PCA | Nakamura E & Miyao K:2003, Further evaluation of the basic nature of the human biological aging process based on a factor analysis of age-related physiological variables [11] | 2003 | Japan | 86 Males | 31–77 years | Healthy population
(including some early functional decline or disease) |
25 → 9 |
PCA | Ueno LM et al.:2003, Biomarkers of aging in women and the rate of longitudinal changes [12] | 2003 | Japan | 981 Females
(cross-sectional study) 110 Females (longitudinal study) |
28–80 years | Healthy population | 31 → 5 |
PCA | Nakamura E & Miyao K:2007, A method for identifying biomarkers of aging and constructing an index of biological age in humans [13] | 2007 | Japan | 86 Males | 31–77 years | Healthy population
(including some early functional decline or disease) |
29 → 5 |
MLR | Bae CY et al.:2008, Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters [14] | 2008 | Korea | 1,302 Males
2,273 Females |
40–88 years | General population | 80 → 25 |
PCA | Nakamura E & Miyao K:2008, Sex differences in human biological aging [15] | 2008 | Japan | 86 Males
93 Females |
31–77 years | Healthy population
(including some early functional decline or disease) |
29 → 5 |
PCA | Park J et al.:2009, Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men [16] | 2009 | Korea | 1,588 Males | 30–77 years | Healthy population
(including some early functional decline or disease) |
11 |
PCA | Bai X et al.:2010, Evaluation of biological aging process - a population-based study of healthy people in China [1] | 2010 | China | 392 Males
460 Females |
30–98 years | Healthy population
(including some early functional decline or disease) |
108 → 8 |
MLR/PCA/KDM | Cho IH et al.:2010, An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI) [17] | 2010 | Korea | 200 Males | 30–70 years | General population | 16 → 11/3 principal components |
PCA | Jee H et al.:2012, Development and application of biological age prediction models with physical fitness and physiological components in Korean adults [18] | 2012 | Korea | 1,604 Males
760 Females |
30–85 years | Healthy population | 14 → 8 |
MLR | Bae CY et al.:2013, Models for estimating the biological age of five organs using clinical biomarkers that are commonly measured in clinical practice settings [20] | 2013 | Korea | 66,168 Males
55,021 Females |
20–89 years | General population | 34 |
MLR/PCA/KDM | Levine ME:2013, Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? [19] | 2013 | United States | 9,389 People | 30–75 years | NHANES (1988–1994) | 21 → 10 |
PCA | Zhang WG et al.:2014, Construction of an integral formula of biological age for a healthy Chinese population using principle component analysis [21] | 2014 | China | 505 People | 35–91 years | Healthy population | 114 → 7 |
PCA | Zhang WG et al.:2014, Select aging biomarkers based on telomere length and chronological age to build a biological age equation [22] | 2014 | China | 69 Males
70 Females |
35–91 years | Healthy population | 105 → 6 |
KDM | Belsky DW et al.:2015, Quantification of biological aging in young adults [23] | 2015 | New Zealand | 954 People | 38 years | The Dunedin Study
(1972–1973) |
10 |
KDM | Mitnitski A et al.:2017, Heterogeneity of Human Aging and Its Assessment [25] | 2016 | Canada | 1,013 People
(61.6% Females) |
Average 80.8 ± 7.2
years |
Canadian Study of Health and Aging (1991–1992) | 22 → 10 |
DNN | Putin E et al.:2016, Deep biomarkers of human aging: Application of deep neural networks to biomarker development [24] | 2016 | Russia | 62,419 People | 0–100 years | Anonymous population | 41 |
MLR/PCA/KDM | Jee H & Park J:2017, Selection of an optimal set of biomarkers and comparative analyses of biological age estimation models in Korean females [26] | 2017 | Korea | 912 Females | 30–80 years | Healthy population | 31 → 8 |
PCA | Kang YG et al.:2017, Models for estimating the metabolic syndrome biological age as the new index for evaluation and management of metabolic syndrome [27] | 2017 | Korea | 165,395 Males
98,433 Females |
Average 44.2 ± 10.6 years | Healthy population
(including some early functional decline or disease) |
5 |
PCA | Zhang W et al.:2017, Model Construction for Biological Age Based on a Cross-Sectional Study of a Healthy Chinese Han population [28] | 2017 | China | 581 Males
792 Females |
19–93 years | Healthy population | 74 → 5 |
KDM | Brown PJ et al.:2018, Biological Age, Not Chronological Age, Is Associated with Late-Life Depression [29] | 2018 | United States | 1,356 Males
1,420 Females |
70–79 years | The Health ABC Study
(2013.11) |
8 |
DNN | Mamoshina P et al.:2018, Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations [31] | 2018 | Korea, Canada, Eastern Europe | 142,379 People | ≥20 years | Anonymous population | 19 |
KDM | Murabito JM et al.:2018, Measures of Biologic Age in a Community Sample Predict Mortality and Age-Related Disease: The Framingham Offspring Study [30] | 2018 | United States | 2,532–3,417 People | Average 45/62/67 years (Exam 2/7/8) | The Framingham Heart Study
Exam 2 (1979–1983) Exam 7 (1998–2001) Exam 8 (2005–2008) |
clinical BA:6
inflammatory BA:9 |
CNN | Pyrkov TV et al.:2018, Extracting biological age from biomedical data via deep learning: too much of a good thing? [41] | 2018 | United States | 7,454 People
(51% Females) |
6–84 years | NHANES (2003–2006) | 1-Week Activity Data |
KDM | Hastings WJ et al.:2019, Comparability of biological aging measures in the National Health and Nutrition Examination Study, 1999-2002 [34] | 2019 | United States | 6,731 People
(52% Males) |
20–84 years | NHANES (1999–2002) | 12 |
MLR/PCA/KDM | Jee H:2019, Selection of a set of biomarkers and comparisons of biological age estimation models for Korean men [33] | 2019 | Korea | 940 Males | 30–80 years | Healthy population | 32 → 6 |
DNN | Mamoshina P et al.:2019, Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers [32] | 2019 | Canada | 149,000 People | Average 55 years | Anonymous population | 18/20/23(three DNN models) |
ConvLSTM | Rahman SA & Adjeroh DA:2019, Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity [42] | 2019 | United States | 7,104 People | 18–84 years | NHANES (2003–2006) | 1-Week Activity Data |
KDM | Gaydosh L et al.:2020, Testing Proposed Quantifications of Biological Aging in Taiwanese Older Adults [36] | 2020 | China Taiwan | 951 People | Average 67.7 ± 8.3 years | Social Environment and Biomarkers of Aging Study (2000) | 11 |
KDM | Liu Z:2021, Development and Validation of 2 Composite Aging Measures Using Routine Clinical Biomarkers in the Chinese Population: Analyses From 2 Prospective Cohort Studies [38] | 2020 | China | 8,119 People
(53.5% Females) |
20–79 years | China Nutrition and Health Survey (2009) | 27 → 12 |
KDM | Parker DC et al.:2020, Association of Blood Chemistry Quantifications of Biological Aging With Disability and Mortality in Older Adults [37] | 2020 | United States | 1,374 People
(35% Males) |
71–102 years | Duke Established Populations for Epidemiologic Studies of the Elderly (1991–1992) | 10 |
MLR/PCA/KDM | Zhong X et al.:2020, Estimating Biological Age in the Singapore Longitudinal Aging Study [35] | 2020 | Singapore | 2,844 People | 55–94 years | Singapore Longitudinal Aging Studies (2008.03–2013.11) | 68 → 8/10(Males/Females) |
PCA/KDM | Chan et al. | 2021 | UK | 141,254 People | 40–70 years | Healthy population | 110 → 51 principal components |
DNN | Gialluisi A et al.:2022, Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing [40] | 2021 | Italy | 23,858 People
(51.7% Females) |
Average 55.9 ± 12.0 years | The Moli-Sani Study
(2005.03–2010.04) |
36 |
KDM | Kuo CL et al.:2021, Genetic associations for two biological age measures point to distinct aging phenotypes [39] | 2021 | UK | 294,293 People | Average 56.7 ± 8.0 years | UK Biobank (2006–2010) | 7 |
CNN | Raghu VK et al.:2021, Deep Learning to Estimate Biological Age From Chest Radiographs [43] | 2021 | United States | 116,035 People | 40–100 years | General population | Chest X-ray dataset |
MLR/KDM | Bahour et al. | 2022 | United States | 2,459 People | 20–80 years | Diabetes, pre-diabetes, and NHANES (2017–2018) population | 8 |
Deep learning | Nusinovici et al. | 2022 | Korea | 40,480 People | ≥65 years | Korean Health Screening study | retinal photos |
- ↑ Jump up to: 1.0 1.1 1.2 Bai X et al.: Evaluation of biological aging process - a population-based study of healthy people in China. Gerontology 2010. (PMID 19940465) [PubMed] [DOI] Abstract
- ↑ Jump up to: 2.0 2.1 Hollingsworth JW et al.: Correlations between tests of aging in Hiroshima subjects--an attempt to define "physiologic age". Yale J Biol Med 1965. (PMID 5841151) [PubMed] [Full text]
- ↑ Jump up to: 3.0 3.1 Webster IW & Logie AR: A relationship between functional age and health status in female subjects. J Gerontol 1976. (PMID 950448) [PubMed] [DOI] Abstract
- ↑ Jump up to: 4.0 4.1 Takeda H et al.: Evaluation of biological age and physical age by multiple regression analysis. Med Inform (Lond) 1982. (PMID 7162237) [PubMed] [DOI]
- ↑ Jump up to: 5.0 5.1 Voitenko VP & Tokar AV: The assessment of biological age and sex differences of human aging. Exp Aging Res 1983. (PMID 6667707) [PubMed] [DOI] Abstract
- ↑ Jump up to: 6.0 6.1 Dubina TL et al.: Biological age and its estimation. III. Introduction of a correction to the multiple regression model of biological age in cross-sectional and longitudinal studies. Exp Gerontol 1984. (PMID 6610563) [PubMed] [DOI] Abstract
- ↑ Jump up to: 7.0 7.1 7.2 Nakamura E et al.: Assessment of biological age by principal component analysis. Mech Ageing Dev 1988. (PMID 3226152) [PubMed] [DOI] Abstract
- ↑ Jump up to: 8.0 8.1 Nakamura E et al.: Biological age versus physical fitness age. Eur J Appl Physiol Occup Physiol 1989. (PMID 2737197) [PubMed] [DOI] Abstract
- ↑ Jump up to: 9.0 9.1 Nakamura E et al.: Biological age versus physical fitness age in women. Eur J Appl Physiol Occup Physiol 1990. (PMID 2282902) [PubMed] [DOI] Abstract
- ↑ Jump up to: 10.0 10.1 Nakamura E et al.: Effects of habitual physical exercise on physiological age in men aged 20-85 years as estimated using principal component analysis. Eur J Appl Physiol Occup Physiol 1996. (PMID 8803500) [PubMed] [DOI] Abstract
- ↑ Jump up to: 11.0 11.1 Nakamura E & Miyao K: Further evaluation of the basic nature of the human biological aging process based on a factor analysis of age-related physiological variables. J Gerontol A Biol Sci Med Sci 2003. (PMID 12634284) [PubMed] [DOI] Abstract
- ↑ Jump up to: 12.0 12.1 Ueno LM et al.: Biomarkers of aging in women and the rate of longitudinal changes. J Physiol Anthropol Appl Human Sci 2003. (PMID 12672981) [PubMed] [DOI] Abstract
- ↑ Jump up to: 13.0 13.1 Nakamura E & Miyao K: A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol A Biol Sci Med Sci 2007. (PMID 17921421) [PubMed] [DOI] Abstract
- ↑ Jump up to: 14.0 14.1 Bae CY et al.: Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch Gerontol Geriatr 2008. (PMID 17889950) [PubMed] [DOI] Abstract
- ↑ Jump up to: 15.0 15.1 Nakamura E & Miyao K: Sex differences in human biological aging. J Gerontol A Biol Sci Med Sci 2008. (PMID 18840798) [PubMed] [DOI] Abstract
- ↑ Jump up to: 16.0 16.1 Park J et al.: Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men. Arch Gerontol Geriatr 2009. (PMID 18597867) [PubMed] [DOI] Abstract
- ↑ Jump up to: 17.0 17.1 17.2 Cho IH et al.: An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI). Mech Ageing Dev 2010. (PMID 20005245) [PubMed] [DOI] Abstract
- ↑ Jump up to: 18.0 18.1 Jee H et al.: Development and application of biological age prediction models with physical fitness and physiological components in Korean adults. Gerontology 2012. (PMID 22433233) [PubMed] [DOI] Abstract
- ↑ Jump up to: 19.0 19.1 19.2 19.3 Levine ME: Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age?. J Gerontol A Biol Sci Med Sci 2013. (PMID 23213031) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 20.0 20.1 Bae CY et al.: Models for estimating the biological age of five organs using clinical biomarkers that are commonly measured in clinical practice settings. Maturitas 2013. (PMID 23642770) [PubMed] [DOI] Abstract
- ↑ Jump up to: 21.0 21.1 Zhang WG et al.: Construction of an integral formula of biological age for a healthy Chinese population using principle component analysis. J Nutr Health Aging 2014. (PMID 24522464) [PubMed] [DOI] Abstract
- ↑ Jump up to: 22.0 22.1 Zhang WG et al.: Select aging biomarkers based on telomere length and chronological age to build a biological age equation. Age (Dordr) 2014. (PMID 24659482) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 23.0 23.1 Belsky DW et al.: Quantification of biological aging in young adults. Proc Natl Acad Sci U S A 2015. (PMID 26150497) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 24.0 24.1 Putin E et al.: Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY) 2016. (PMID 27191382) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 25.0 25.1 Mitnitski A et al.: Heterogeneity of Human Aging and Its Assessment. J Gerontol A Biol Sci Med Sci 2017. (PMID 27216811) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 26.0 26.1 26.2 26.3 Jee H & Park J: Selection of an optimal set of biomarkers and comparative analyses of biological age estimation models in Korean females. Arch Gerontol Geriatr 2017. (PMID 28110151) [PubMed] [DOI] Abstract
- ↑ Jump up to: 27.0 27.1 Kang YG et al.: Models for estimating the metabolic syndrome biological age as the new index for evaluation and management of metabolic syndrome. Clin Interv Aging 2017. (PMID 28203066) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 28.0 28.1 Zhang W et al.: Model Construction for Biological Age Based on a Cross-Sectional Study of a Healthy Chinese Han population. J Nutr Health Aging 2017. (PMID 29188884) [PubMed] [DOI] Abstract
- ↑ Jump up to: 29.0 29.1 Brown PJ et al.: Biological Age, Not Chronological Age, Is Associated with Late-Life Depression. J Gerontol A Biol Sci Med Sci 2018. (PMID 28958059) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 30.0 30.1 Murabito JM et al.: Measures of Biologic Age in a Community Sample Predict Mortality and Age-Related Disease: The Framingham Offspring Study. J Gerontol A Biol Sci Med Sci 2018. (PMID 28977464) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 31.0 31.1 Mamoshina P et al.: Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations. J Gerontol A Biol Sci Med Sci 2018. (PMID 29340580) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 32.0 32.1 Mamoshina P et al.: Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers. Sci Rep 2019. (PMID 30644411) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 33.0 33.1 33.2 33.3 Jee H: Selection of a set of biomarkers and comparisons of biological age estimation models for Korean men. J Exerc Rehabil 2019. (PMID 30899733) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 34.0 34.1 Hastings WJ et al.: Comparability of biological aging measures in the National Health and Nutrition Examination Study, 1999-2002. Psychoneuroendocrinology 2019. (PMID 30999227) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 35.0 35.1 35.2 35.3 Zhong X et al.: Estimating Biological Age in the Singapore Longitudinal Aging Study. J Gerontol A Biol Sci Med Sci 2020. (PMID 31179487) [PubMed] [DOI] Abstract
- ↑ Jump up to: 36.0 36.1 Gaydosh L et al.: Testing Proposed Quantifications of Biological Aging in Taiwanese Older Adults. J Gerontol A Biol Sci Med Sci 2020. (PMID 31566204) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 37.0 37.1 Parker DC et al.: Association of Blood Chemistry Quantifications of Biological Aging With Disability and Mortality in Older Adults. J Gerontol A Biol Sci Med Sci 2020. (PMID 31693736) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 38.0 38.1 Liu Z: Development and Validation of 2 Composite Aging Measures Using Routine Clinical Biomarkers in the Chinese Population: Analyses From 2 Prospective Cohort Studies. J Gerontol A Biol Sci Med Sci 2021. (PMID 32946548) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 39.0 39.1 Kuo CL et al.: Genetic associations for two biological age measures point to distinct aging phenotypes. Aging Cell 2021. (PMID 34038024) [PubMed] [DOI] [Full text] Abstract
- ↑ Jump up to: 40.0 40.1 Gialluisi A et al.: Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing. Eur J Epidemiol 2022. (PMID 34453631) [PubMed] [DOI] Abstract
- ↑ Pyrkov TV et al.: Extracting biological age from biomedical data via deep learning: too much of a good thing?. Sci Rep 2018. (PMID 29581467) [PubMed] [DOI] [Full text] Abstract
- ↑ Rahman SA & Adjeroh DA: Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity. Sci Rep 2019. (PMID 31388024) [PubMed] [DOI] [Full text] Abstract
- ↑ Raghu VK et al.: Deep Learning to Estimate Biological Age From Chest Radiographs. JACC Cardiovasc Imaging 2021. (PMID 33744131) [PubMed] [DOI] Abstract