User:Strimo/ModuleTest

    From Longevity Wiki

    Hello, World! [1]

    Table 1

    Estimation Method MLR MLR MLR MLR MLR PCA MLR PCA PCA PCA PCA PCA PCA MLR PCA PCA PCA KDM MLR PCA KDM MLR PCA MLR PCA PCA KDM Deep learning KDM KDM MLR PCA PCA PCA KDM KDM Deep learning Deep learning KDM MLR PCA KDM KDM MLR PCA KDM KDM KDM KDM Deep learning
    Year 1965 1976 1982 1983 1984 1988 1988 1989 1990 1996 2003 2003 2007 2008 2008 2009 2010 2010 2010 2012 2013 2013 2013 2013 2014 2014 2015 2016 2016 2017 2017 2017 2017 2017 2018 2018 2018 2019 2019 2019 2019 2019 2020 2020 2020 2020 2020 2020 2021 2021
    Biomarker Count 7 7 4 8 3 10 10 7 9 8 9 5 5 16 5 11 7 10 10 7 10 10 9 33 6 6 10 10 10 7 8 8 5 5 8 7 19 4 5 6 6 12 10 10 10 11 10 12 7 33
    System Biomarker Count [2] [3] [4] [5] [6] [7] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [1] [17] [17] [18] [19] [19] [19] [20] [21] [22] [23] [24] [25] [26] [26] [26] [27] [28] [29] [30] [31] [32] [33] [33] [33] [34] [35] [35] [35] [36] [37] [38] [39] [40]
    Cardiovascular System Systolic Blood Pressure (SBP) 32 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
    Cardiovascular System Diastolic Blood Pressure (DBP) 6 x x x x x x
    Cardiovascular System Pulse Pressure 4 x x x x
    Cardiovascular System Mean Arterial Pressure 1 x
    Cardiovascular System Pulse 3 x x x
    Cardiovascular System Pulse Wave Velocity 1 x
    Cardiovascular System Heart Rate 1 x
    Cardiovascular System Intima-Media Thickness 2 x x
    Cardiovascular System Minimum Intima-Media Thickness 2 x x
    Cardiovascular System End Diastolic Velocity 1 x
    Cardiovascular System Mitral Valve E/A Peak 2 x x
    Cardiovascular System MVEL, MVES, MVEA 3 x x x
    Cardiovascular System Atherosclerosis Index 2 x x
    Cardiovascular System NT-proBNP 1 x
    Cardiovascular System Cardiac Troponin I 1 x
    Cardiovascular System Creatine Phosphokinase 1 x
    Cardiovascular System Homocysteine 1 x
    Respiratory System Forced Vital Capacity (FVC) 10 x x x x x x x x x x
    Respiratory System Forced Expiratory Volume in 1 Second (FEV1) 25 x x x x x x x x x x x x x x x x x x x x x x x x x
    Respiratory System Vital Capacity 2 x x
    Respiratory System Maximal Midexpiratory Flow Rate 75/25 1 x
    Respiratory System VO2 Max 2 x x
    Nervous System Mini-Mental State Examination (MMSE) 3 x x x
    Nervous System Digital Symbol Test 2 x x
    Nervous System Numeric Memory 2 x x
    Nervous System Associated Memory 2 x x
    Nervous System Topological Memory 2 x x
    Nervous System Short-Time Memory 1 x
    Nervous System Concentration 2 x x
    Nervous System Intellectuality - Mental Defect 1 x
    Nervous System Trail Making Test 2 x x
    Endocrine Metabolic System Glucose 10 x x x x x x x x x x
    Endocrine Metabolic System HBA1C 13 x x x x x x x x x x x x x
    Endocrine Metabolic System C-peptide 1 x
    Endocrine Metabolic System Insulin 1 x
    Endocrine Metabolic System Triglyceride 8 x x x x x x x x
    Endocrine Metabolic System Total Cholesterol (TC) 22 x x x x x x x x x x x x x x x x x x x x x x
    Endocrine Metabolic System High-Density Lipoprotein (HDL) 4 x x x x
    Endocrine Metabolic System Low-Density Lipoprotein (LDL) 4 x x x x
    Endocrine Metabolic System Apolipoprotein A1 and B 1 x
    Endocrine Metabolic System Thyroid-Stimulating Hormone (TSH) 2 x x
    Endocrine Metabolic System Testosterone 2 x x
    Endocrine Metabolic System Vitamin D 4 x x x x
    Endocrine Metabolic System Calcium 2 x x
    Endocrine Metabolic System Potassium 1 x
    Endocrine Metabolic System Sodium 1 x
    Endocrine Metabolic System Inorganic Phosphorus 1 x
    Endocrine Metabolic System Urea 26 x x x x x x x x x x x x x x x x x x x x x x x x x x
    Endocrine Metabolic System Creatinine 18 x x x x x x x x x x x x x x x x x x
    Endocrine Metabolic System Estimated Glomerular Filtration Rate (eGFR) 3 x x x
    Endocrine Metabolic System Uric Acid 3 x x x
    Endocrine Metabolic System Cystatin C 5 x x x x x
    Endocrine Metabolic System Creatinine Clearance 1 x
    Endocrine Metabolic System Urine Specific Gravity 1 x
    Endocrine Metabolic System Urine pH 1 x
    Digestive System Alanine Aminotransferase (ALT) 3 x x x
    Digestive System Aspartate Aminotransferase (AST) 9 x x x x x x x x x
    Digestive System Alkaline Phosphatase (ALP) 12 x x x x x x x x x x x x
    Digestive System Total Protein 3 x x x
    Digestive System Albumin 21 x x x x x x x x x x x x x x x x x x x x x
    Digestive System Albumin/Globulin Ratio (A/G) 5 x x x x x
    Digestive System Total Bilirubin 2 x x
    Digestive System Direct Bilirubin 1 x
    Digestive System Amylase 1 x
    Digestive System Lactate Dehydrogenase 4 x x x x
    Digestive System Alpha 2 Globulin 1 x
    Digestive System Gamma Glutamyl Transpeptidase 1 x
    Hematologic System Red Blood Cell 9 x x x x x x x x x
    Hematologic System Red Blood Cell Volume Distribution Width 3 x x x
    Hematologic System Hematocrit 4 x x x x
    Hematologic System Mean Corpuscular Volume 5 x x x x x
    Hematologic System Mean Corpuscular Hemoglobin 1 x
    Hematologic System Mean Corpuscular Hemoglobin Concentration 2 x x
    Hematologic System Hemoglobin 12 x x x x x x x x x x x x
    Hematologic System White Blood Cell 4 x x x x
    Hematologic System Granulocytes 1 x
    Hematologic System Neutrophils 1 x
    Hematologic System Basophils, Eosinophils 1 x
    Hematologic System Lymphocytes 5 x x x x x
    Hematologic System Monocytes 4 x x x x
    Hematologic System Platelet 3 x x x
    Hematologic System Mean Platelet Volume 1 x
    Hematologic System Platelet Distribution Width 1 x
    Hematologic System Erythrocyte Sedimentation Rate 3 x x x
    Hematologic System D-dimer, Fibrinogen 3 x x x
    Hematologic System Ferritin 5 x x x x x
    Hematologic System Transferrin 1 x
    Sensory System Visual Accommodation 3 x x x
    Sensory System Visual Reaction Time 2 x x
    Sensory System Visual Acuity 3 x x x
    Sensory System Hearing 6 x x x x x x
    Sensory System Vibrotactile 4 x x x x
    Inflammatory System C-Reactive Protein (CRP) 12 x x x x x x x x x x x x
    Inflammatory System Cytomegalovirus Optical Density 5 x x x x x
    Inflammatory System Interleukin-6 1 x
    Inflammatory System P-selectin 1 x
    Motion Index Grip Strength 8 x x x x x x x x
    Motion Index Vertical Jump 1 x
    Motion Index Timed Up and Go Test 3 x x x
    Motion Index Chair Rise Time 3 x x x
    Body Morphology Index Waist Circumference (WC) 7 x x x x x x x
    Body Morphology Index Waist-to-Hip Ratio 2 x x
    Body Morphology Index Waist-to-Height Ratio 3 x x x
    Body Morphology Index Body Mass Index (BMI) 2 x x
    Body Morphology Index Weight 1 x
    Body Morphology Index Height 3 x x x
    Body Morphology Index Body Fat 3 x x x
    Body Morphology Index Lean Body Mass 2 x x
    Body Morphology Index Soft Lean Mass 1 x
    Genetic Index Terminal Telomere Restriction Fragment 1 x

    Table 3

    Biomarker Key MLR PCA KDM Deep learning
    SBP 23213031 5841151 3226152 950448 6667707 17889950 23642770 28110151 30899733 23213031 3226152 2737197 2282902 8803500 12634284 12672981 17921421 18840798 18597867 22433233 28110151 30899733 23213031 26150497 28110151 28958059 28977464 30999227 30899733 31566204 32946548 34038024
    DBP 17889950 23642770 31179487 31179487 27216811 31179487
    PP 23642770 29188884 24522464 19940465
    MAP 28203066
    Pulse 3226152 3226152 2737197
    PWV 6667707
    HR 2282902
    IMT 24659482 19940465
    MinIMT 29188884 24522464
    EDV 19940465
    MVEAP 29188884 19940465
    MVEL_MVES_MVEA MVEL 19940465 MVES 24522464 MVEA 24659482
    AI 2737197 2282902
    NTproBNP 34453631
    CTnI 34453631
    CPK 23642770
    Homocysteine 23642770
    FVC 3226152 17889950 23642770 20005245 3226152 2737197 2282902 8803500 12634284 20005245
    FEV1 23213031 950448 7162237 17889950 23642770 28110151 30899733 31179487 23213031 12634284 12672981 17921421 18840798 18597867 22433233 28110151 30899733 31179487 23213031 26150497 28110151 28958059 28977464 30899733 31179487
    VC 5841151 6667707
    MMFR 24522464
    VO2Max 18597867 22433233
    CR 33744131
    MMSE 31179487 31179487 31179487
    DST 6667707 24659482
    NM 20005245 20005245
    AM 20005245 20005245
    TM 20005245 20005245
    STM 6610563
    Concentration 20005245 20005245
    IMD 6667707
    TMT 29188884 24522464
    Glucose 17889950 23642770 8803500 12672981 28203066 28977464 27191382 29340580 30644411 34453631
    HBA1C 23213031 23642770 23213031 18597867 23213031 26150497 28958059 30999227 31566204 32946548 31693736 34038024 30644411
    CPeptide 34453631
    Insulin 34453631
    TG 950448 17889950 23642770 2282902 28203066 32946548 29340580 34453631
    TC 23213031 5841151 3226152 950448 7162237 17889950 23642770 28110151 23213031 3226152 8803500 28110151 23213031 26150497 28110151 28958059 28977464 31566204 32946548 34038024 27191382 29340580
    HDL 17889950 28203066 29340580 34453631
    LDL 23642770 18597867 29340580 34453631
    ApoA1B 34453631
    TSH 17889950 27216811
    Testosterone 17889950 34453631
    VitaminD 30899733 30899733 30899733 34453631
    Calcium 27216811 29340580
    Potassium 29340580
    Sodium 29340580
    InorganicPhosphorus 27216811
    Urea 23213031 3226152 950448 23642770 28110151 23213031 3226152 2737197 2282902 8803500 12634284 17921421 18840798 18597867 28110151 23213031 26150497 27216811 28110151 30999227 31566204 32946548 31693736 27191382 29340580 30644411
    Creatinine 23213031 17889950 23642770 28110151 30899733 28110151 30899733 23213031 26150497 27216811 28958059 30999227 31566204 32946548 31693736 34038024 29340580 34453631
    eGFR 31179487 31179487 31179487
    UricAcid 30999227 31693736 34453631
    CystatinC 29188884 24659482 24522464 19940465 34453631
    CreatinineClearance 23642770
    UrineSG 23642770
    UrinepH 23642770
    ALT 23642770 8803500 34453631
    AST 3226152 23642770 28110151 3226152 2737197 2282902 28110151 28110151 34453631
    ALP 23213031 950448 23642770 23213031 23213031 26150497 27216811 28958059 30999227 31693736 34038024 27191382
    TotalProtein 23642770 27216811 29340580
    Albumin 23213031 3226152 23642770 23213031 3226152 12634284 17921421 18840798 18597867 23213031 26150497 27216811 28958059 30999227 31566204 32946548 31693736 34038024 27191382 29340580 34453631
    AGRatio 3226152 23642770 3226152 12634284 12672981
    TotalBilirubin 23642770 29340580
    DirectBilirubin 23642770
    Amylase 23642770
    LDH 7162237 23642770 2282902 8803500
    Alpha2Globulin 27191382
    GGT 23642770
    RBC 30899733 12634284 18840798 30899733 30899733 32946548 27191382 29340580 34453631
    RDW 30999227 27191382 34453631
    Hematocrit 12634284 17921421 27191382 29340580
    MCV 30999227 31566204 31693736 29340580 34453631
    MCH 12672981
    MCHC 29340580 34453631
    Hemoglobin 3226152 31179487 3226152 2737197 2282902 8803500 12634284 31179487 27216811 31179487 29340580 34453631
    WBC 30999227 31566204 31693736 34453631
    Granulocytes 34453631
    Neutrophils 34453631
    BasophilsEosinophils 34453631 34453631
    Lymphocytes 30999227 31566204 31693736 27191382 34453631
    Monocytes 31179487 31179487 31179487 34453631
    Platelet 32946548 29340580 34453631
    MPV 34453631
    PDW 34453631
    ESR 950448 17889950 18597867
    DdimerFibrinogen 24659482 19940465 34453631
    Ferritin 28110151 28110151 28110151 32946548 30644411
    Transferrin 32946548
    VisualAcc 6667707 20005245 20005245
    VisualReactTime 20005245 20005245
    VisualAcuity 5841151 3226152 3226152
    Hearing 5841151 7162237 6667707 20005245 18597867 20005245
    Vibrotactile 5841151 6610563 20005245 20005245
    RetinalPhotos
    CRP 23213031 23213031 23213031 26150497 28958059 28977464 30999227 31566204 32946548 31693736 34038024 34453631
    CMVOptDensity 23213031 23213031 23213031 26150497 31566204
    IL6 28977464
    Pselectin 28977464
    GripStrength 5841151 6610563 31179487 20005245 22433233 31179487 31179487 20005245
    VerticalJump 22433233
    TUGTest 31179487 31179487 31179487
    ChairRiseTime 31179487 31179487 31179487
    PhysicalActivityWeek 29581467 31388024
    WC 23642770 28110151 18597867 22433233 28110151 28203066 28110151
    WaistHipRatio 17889950 23642770
    WaistHeightRatio 30899733 30899733 30899733
    BMI 17889950 23642770
    Weight 6667707
    Height 31179487 31179487 31179487
    BodyFat 17889950 23642770 18597867
    LeanBodyMass 17889950 23642770
    SoftLeanMass 22433233
    TelomereLength 24659482

    Table 2

    Assessment methods Researchers Year Country Sample size Age range Population Aging biomarkers (Candidate → Final)
    MLR Hollingsworth JW et al.:1965, Correlations between tests of aging in Hiroshima subjects--an attempt to define "physiologic age" [2] 1965 Japan 169 Males

    268 Females

    10–70+ years General population 17 → 9
    MLR Webster IW & Logie AR:1976, A relationship between functional age and health status in female subjects [3] 1976 Australia 1,080 Females 21–83 years General population 37 → 7
    MLR Takeda H et al.:1982, Evaluation of biological age and physical age by multiple regression analysis [4] 1982 Japan 200 Males 20–69 years Healthy population 10 → 5
    MLR Voitenko VP & Tokar AV:1983, The assessment of biological age and sex differences of human aging [5] 1983 Soviet Union 88 Males

    109 Females

    19–73 years General population 122 → 11
    MLR Dubina TL et al.:1984, Biological age and its estimation. III. Introduction of a correction to the multiple regression model of biological age in cross-sectional and longitudinal studies [6] 1984 Soviet Union 100 Males

    63 Females

    60–100 years Healthy population 21 → 3
    MLR /PCA Nakamura E et al.:1988, Assessment of biological age by principal component analysis [7] 1988 Japan 462 Males 30–80 years Healthy population 30 → 11
    PCA Nakamura E et al.:1989, Biological age versus physical fitness age [8] 1989 Japan 69 Males Average 42.6 ± 9.4

    years

    Healthy population 18 → 7
    PCA Nakamura E et al.:1990, Biological age versus physical fitness age in women [9] 1990 Japan 65 Females 20–64 years Healthy population 18 → 9
    PCA Nakamura E et al.:1996, Effects of habitual physical exercise on physiological age in men aged 20-85 years as estimated using principal component analysis [10] 1996 Japan 221 Males 20–85 years Healthy population 17 → 8
    PCA Nakamura E & Miyao K:2003, Further evaluation of the basic nature of the human biological aging process based on a factor analysis of age-related physiological variables [11] 2003 Japan 86 Males 31–77 years Healthy population

    (including some early functional decline or disease)

    25 → 9
    PCA Ueno LM et al.:2003, Biomarkers of aging in women and the rate of longitudinal changes [12] 2003 Japan 981 Females

    (cross-sectional study) 110 Females (longitudinal study)

    28–80 years Healthy population 31 → 5
    PCA Nakamura E & Miyao K:2007, A method for identifying biomarkers of aging and constructing an index of biological age in humans [13] 2007 Japan 86 Males 31–77 years Healthy population

    (including some early functional decline or disease)

    29 → 5
    MLR Bae CY et al.:2008, Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters [14] 2008 Korea 1,302 Males

    2,273 Females

    40–88 years General population 80 → 25
    PCA Nakamura E & Miyao K:2008, Sex differences in human biological aging [15] 2008 Japan 86 Males

    93 Females

    31–77 years Healthy population

    (including some early functional decline or disease)

    29 → 5
    PCA Park J et al.:2009, Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men [16] 2009 Korea 1,588 Males 30–77 years Healthy population

    (including some early functional decline or disease)

    11
    PCA Bai X et al.:2010, Evaluation of biological aging process - a population-based study of healthy people in China [1] 2010 China 392 Males

    460 Females

    30–98 years Healthy population

    (including some early functional decline or disease)

    108 → 8
    MLR/PCA/KDM Cho IH et al.:2010, An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI) [17] 2010 Korea 200 Males 30–70 years General population 16 → 11/3 principal components
    PCA Jee H et al.:2012, Development and application of biological age prediction models with physical fitness and physiological components in Korean adults [18] 2012 Korea 1,604 Males

    760 Females

    30–85 years Healthy population 14 → 8
    MLR Bae CY et al.:2013, Models for estimating the biological age of five organs using clinical biomarkers that are commonly measured in clinical practice settings [20] 2013 Korea 66,168 Males

    55,021 Females

    20–89 years General population 34
    MLR/PCA/KDM Levine ME:2013, Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? [19] 2013 United States 9,389 People 30–75 years NHANES (1988–1994) 21 → 10
    PCA Zhang WG et al.:2014, Construction of an integral formula of biological age for a healthy Chinese population using principle component analysis [21] 2014 China 505 People 35–91 years Healthy population 114 → 7
    PCA Zhang WG et al.:2014, Select aging biomarkers based on telomere length and chronological age to build a biological age equation [22] 2014 China 69 Males

    70 Females

    35–91 years Healthy population 105 → 6
    KDM Belsky DW et al.:2015, Quantification of biological aging in young adults [23] 2015 New Zealand 954 People 38 years The Dunedin Study

    (1972–1973)

    10
    KDM Mitnitski A et al.:2017, Heterogeneity of Human Aging and Its Assessment [25] 2016 Canada 1,013 People

    (61.6% Females)

    Average 80.8 ± 7.2

    years

    Canadian Study of Health and Aging (1991–1992) 22 → 10
    DNN Putin E et al.:2016, Deep biomarkers of human aging: Application of deep neural networks to biomarker development [24] 2016 Russia 62,419 People 0–100 years Anonymous population 41
    MLR/PCA/KDM Jee H & Park J:2017, Selection of an optimal set of biomarkers and comparative analyses of biological age estimation models in Korean females [26] 2017 Korea 912 Females 30–80 years Healthy population 31 → 8
    PCA Kang YG et al.:2017, Models for estimating the metabolic syndrome biological age as the new index for evaluation and management of metabolic syndrome [27] 2017 Korea 165,395 Males

    98,433 Females

    Average 44.2 ± 10.6 years Healthy population

    (including some early functional decline or disease)

    5
    PCA Zhang W et al.:2017, Model Construction for Biological Age Based on a Cross-Sectional Study of a Healthy Chinese Han population [28] 2017 China 581 Males

    792 Females

    19–93 years Healthy population 74 → 5
    KDM Brown PJ et al.:2018, Biological Age, Not Chronological Age, Is Associated with Late-Life Depression [29] 2018 United States 1,356 Males

    1,420 Females

    70–79 years The Health ABC Study

    (2013.11)

    8
    DNN Mamoshina P et al.:2018, Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations [31] 2018 Korea, Canada, Eastern Europe 142,379 People ≥20 years Anonymous population 19
    KDM Murabito JM et al.:2018, Measures of Biologic Age in a Community Sample Predict Mortality and Age-Related Disease: The Framingham Offspring Study [30] 2018 United States 2,532–3,417 People Average 45/62/67 years (Exam 2/7/8) The Framingham Heart Study

    Exam 2 (1979–1983) Exam 7 (1998–2001) Exam 8 (2005–2008)

    clinical BA:6

    inflammatory BA:9

    CNN Pyrkov TV et al.:2018, Extracting biological age from biomedical data via deep learning: too much of a good thing? [41] 2018 United States 7,454 People

    (51% Females)

    6–84 years NHANES (2003–2006) 1-Week Activity Data
    KDM Hastings WJ et al.:2019, Comparability of biological aging measures in the National Health and Nutrition Examination Study, 1999-2002 [34] 2019 United States 6,731 People

    (52% Males)

    20–84 years NHANES (1999–2002) 12
    MLR/PCA/KDM Jee H:2019, Selection of a set of biomarkers and comparisons of biological age estimation models for Korean men [33] 2019 Korea 940 Males 30–80 years Healthy population 32 → 6
    DNN Mamoshina P et al.:2019, Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers [32] 2019 Canada 149,000 People Average 55 years Anonymous population 18/20/23(three DNN models)
    ConvLSTM Rahman SA & Adjeroh DA:2019, Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity [42] 2019 United States 7,104 People 18–84 years NHANES (2003–2006) 1-Week Activity Data
    KDM Gaydosh L et al.:2020, Testing Proposed Quantifications of Biological Aging in Taiwanese Older Adults [36] 2020 China Taiwan 951 People Average 67.7 ± 8.3 years Social Environment and Biomarkers of Aging Study (2000) 11
    KDM Liu Z:2021, Development and Validation of 2 Composite Aging Measures Using Routine Clinical Biomarkers in the Chinese Population: Analyses From 2 Prospective Cohort Studies [38] 2020 China 8,119 People

    (53.5% Females)

    20–79 years China Nutrition and Health Survey (2009) 27 → 12
    KDM Parker DC et al.:2020, Association of Blood Chemistry Quantifications of Biological Aging With Disability and Mortality in Older Adults [37] 2020 United States 1,374 People

    (35% Males)

    71–102 years Duke Established Populations for Epidemiologic Studies of the Elderly (1991–1992) 10
    MLR/PCA/KDM Zhong X et al.:2020, Estimating Biological Age in the Singapore Longitudinal Aging Study [35] 2020 Singapore 2,844 People 55–94 years Singapore Longitudinal Aging Studies (2008.03–2013.11) 68 → 8/10(Males/Females)
    PCA/KDM Chan et al. 2021 UK 141,254 People 40–70 years Healthy population 110 → 51 principal components
    DNN Gialluisi A et al.:2022, Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing [40] 2021 Italy 23,858 People

    (51.7% Females)

    Average 55.9 ± 12.0 years The Moli-Sani Study

    (2005.03–2010.04)

    36
    KDM Kuo CL et al.:2021, Genetic associations for two biological age measures point to distinct aging phenotypes [39] 2021 UK 294,293 People Average 56.7 ± 8.0 years UK Biobank (2006–2010) 7
    CNN Raghu VK et al.:2021, Deep Learning to Estimate Biological Age From Chest Radiographs [43] 2021 United States 116,035 People 40–100 years General population Chest X-ray dataset
    MLR/KDM Bahour et al. 2022 United States 2,459 People 20–80 years Diabetes, pre-diabetes, and NHANES (2017–2018) population 8
    Deep learning Nusinovici et al. 2022 Korea 40,480 People ≥65 years Korean Health Screening study retinal photos
    1. Jump up to: 1.0 1.1 1.2 Bai X et al.: Evaluation of biological aging process - a population-based study of healthy people in China. Gerontology 2010. (PMID 19940465) [PubMed] [DOI]
    2. Jump up to: 2.0 2.1 Hollingsworth JW et al.: Correlations between tests of aging in Hiroshima subjects--an attempt to define "physiologic age". Yale J Biol Med 1965. (PMID 5841151) [PubMed] [Full text]
    3. Jump up to: 3.0 3.1 Webster IW & Logie AR: A relationship between functional age and health status in female subjects. J Gerontol 1976. (PMID 950448) [PubMed] [DOI]
    4. Jump up to: 4.0 4.1 Takeda H et al.: Evaluation of biological age and physical age by multiple regression analysis. Med Inform (Lond) 1982. (PMID 7162237) [PubMed] [DOI]
    5. Jump up to: 5.0 5.1 Voitenko VP & Tokar AV: The assessment of biological age and sex differences of human aging. Exp Aging Res 1983. (PMID 6667707) [PubMed] [DOI]
    6. Jump up to: 6.0 6.1 Dubina TL et al.: Biological age and its estimation. III. Introduction of a correction to the multiple regression model of biological age in cross-sectional and longitudinal studies. Exp Gerontol 1984. (PMID 6610563) [PubMed] [DOI]
    7. Jump up to: 7.0 7.1 7.2 Nakamura E et al.: Assessment of biological age by principal component analysis. Mech Ageing Dev 1988. (PMID 3226152) [PubMed] [DOI]
    8. Jump up to: 8.0 8.1 Nakamura E et al.: Biological age versus physical fitness age. Eur J Appl Physiol Occup Physiol 1989. (PMID 2737197) [PubMed] [DOI]
    9. Jump up to: 9.0 9.1 Nakamura E et al.: Biological age versus physical fitness age in women. Eur J Appl Physiol Occup Physiol 1990. (PMID 2282902) [PubMed] [DOI]
    10. Jump up to: 10.0 10.1 Nakamura E et al.: Effects of habitual physical exercise on physiological age in men aged 20-85 years as estimated using principal component analysis. Eur J Appl Physiol Occup Physiol 1996. (PMID 8803500) [PubMed] [DOI]
    11. Jump up to: 11.0 11.1 Nakamura E & Miyao K: Further evaluation of the basic nature of the human biological aging process based on a factor analysis of age-related physiological variables. J Gerontol A Biol Sci Med Sci 2003. (PMID 12634284) [PubMed] [DOI]
    12. Jump up to: 12.0 12.1 Ueno LM et al.: Biomarkers of aging in women and the rate of longitudinal changes. J Physiol Anthropol Appl Human Sci 2003. (PMID 12672981) [PubMed] [DOI]
    13. Jump up to: 13.0 13.1 Nakamura E & Miyao K: A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol A Biol Sci Med Sci 2007. (PMID 17921421) [PubMed] [DOI]
    14. Jump up to: 14.0 14.1 Bae CY et al.: Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch Gerontol Geriatr 2008. (PMID 17889950) [PubMed] [DOI]
    15. Jump up to: 15.0 15.1 Nakamura E & Miyao K: Sex differences in human biological aging. J Gerontol A Biol Sci Med Sci 2008. (PMID 18840798) [PubMed] [DOI]
    16. Jump up to: 16.0 16.1 Park J et al.: Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men. Arch Gerontol Geriatr 2009. (PMID 18597867) [PubMed] [DOI]
    17. Jump up to: 17.0 17.1 17.2 Cho IH et al.: An empirical comparative study on biological age estimation algorithms with an application of Work Ability Index (WAI). Mech Ageing Dev 2010. (PMID 20005245) [PubMed] [DOI]
    18. Jump up to: 18.0 18.1 Jee H et al.: Development and application of biological age prediction models with physical fitness and physiological components in Korean adults. Gerontology 2012. (PMID 22433233) [PubMed] [DOI]
    19. Jump up to: 19.0 19.1 19.2 19.3 Levine ME: Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age?. J Gerontol A Biol Sci Med Sci 2013. (PMID 23213031) [PubMed] [DOI] [Full text]
    20. Jump up to: 20.0 20.1 Bae CY et al.: Models for estimating the biological age of five organs using clinical biomarkers that are commonly measured in clinical practice settings. Maturitas 2013. (PMID 23642770) [PubMed] [DOI]
    21. Jump up to: 21.0 21.1 Zhang WG et al.: Construction of an integral formula of biological age for a healthy Chinese population using principle component analysis. J Nutr Health Aging 2014. (PMID 24522464) [PubMed] [DOI]
    22. Jump up to: 22.0 22.1 Zhang WG et al.: Select aging biomarkers based on telomere length and chronological age to build a biological age equation. Age (Dordr) 2014. (PMID 24659482) [PubMed] [DOI] [Full text]
    23. Jump up to: 23.0 23.1 Belsky DW et al.: Quantification of biological aging in young adults. Proc Natl Acad Sci U S A 2015. (PMID 26150497) [PubMed] [DOI] [Full text]
    24. Jump up to: 24.0 24.1 Putin E et al.: Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY) 2016. (PMID 27191382) [PubMed] [DOI] [Full text]
    25. Jump up to: 25.0 25.1 Mitnitski A et al.: Heterogeneity of Human Aging and Its Assessment. J Gerontol A Biol Sci Med Sci 2017. (PMID 27216811) [PubMed] [DOI] [Full text]
    26. Jump up to: 26.0 26.1 26.2 26.3 Jee H & Park J: Selection of an optimal set of biomarkers and comparative analyses of biological age estimation models in Korean females. Arch Gerontol Geriatr 2017. (PMID 28110151) [PubMed] [DOI]
    27. Jump up to: 27.0 27.1 Kang YG et al.: Models for estimating the metabolic syndrome biological age as the new index for evaluation and management of metabolic syndrome. Clin Interv Aging 2017. (PMID 28203066) [PubMed] [DOI] [Full text]
    28. Jump up to: 28.0 28.1 Zhang W et al.: Model Construction for Biological Age Based on a Cross-Sectional Study of a Healthy Chinese Han population. J Nutr Health Aging 2017. (PMID 29188884) [PubMed] [DOI]
    29. Jump up to: 29.0 29.1 Brown PJ et al.: Biological Age, Not Chronological Age, Is Associated with Late-Life Depression. J Gerontol A Biol Sci Med Sci 2018. (PMID 28958059) [PubMed] [DOI] [Full text]
    30. Jump up to: 30.0 30.1 Murabito JM et al.: Measures of Biologic Age in a Community Sample Predict Mortality and Age-Related Disease: The Framingham Offspring Study. J Gerontol A Biol Sci Med Sci 2018. (PMID 28977464) [PubMed] [DOI] [Full text]
    31. Jump up to: 31.0 31.1 Mamoshina P et al.: Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations. J Gerontol A Biol Sci Med Sci 2018. (PMID 29340580) [PubMed] [DOI] [Full text]
    32. Jump up to: 32.0 32.1 Mamoshina P et al.: Blood Biochemistry Analysis to Detect Smoking Status and Quantify Accelerated Aging in Smokers. Sci Rep 2019. (PMID 30644411) [PubMed] [DOI] [Full text]
    33. Jump up to: 33.0 33.1 33.2 33.3 Jee H: Selection of a set of biomarkers and comparisons of biological age estimation models for Korean men. J Exerc Rehabil 2019. (PMID 30899733) [PubMed] [DOI] [Full text]
    34. Jump up to: 34.0 34.1 Hastings WJ et al.: Comparability of biological aging measures in the National Health and Nutrition Examination Study, 1999-2002. Psychoneuroendocrinology 2019. (PMID 30999227) [PubMed] [DOI] [Full text]
    35. Jump up to: 35.0 35.1 35.2 35.3 Zhong X et al.: Estimating Biological Age in the Singapore Longitudinal Aging Study. J Gerontol A Biol Sci Med Sci 2020. (PMID 31179487) [PubMed] [DOI]
    36. Jump up to: 36.0 36.1 Gaydosh L et al.: Testing Proposed Quantifications of Biological Aging in Taiwanese Older Adults. J Gerontol A Biol Sci Med Sci 2020. (PMID 31566204) [PubMed] [DOI] [Full text]
    37. Jump up to: 37.0 37.1 Parker DC et al.: Association of Blood Chemistry Quantifications of Biological Aging With Disability and Mortality in Older Adults. J Gerontol A Biol Sci Med Sci 2020. (PMID 31693736) [PubMed] [DOI] [Full text]
    38. Jump up to: 38.0 38.1 Liu Z: Development and Validation of 2 Composite Aging Measures Using Routine Clinical Biomarkers in the Chinese Population: Analyses From 2 Prospective Cohort Studies. J Gerontol A Biol Sci Med Sci 2021. (PMID 32946548) [PubMed] [DOI] [Full text]
    39. Jump up to: 39.0 39.1 Kuo CL et al.: Genetic associations for two biological age measures point to distinct aging phenotypes. Aging Cell 2021. (PMID 34038024) [PubMed] [DOI] [Full text]
    40. Jump up to: 40.0 40.1 Gialluisi A et al.: Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing. Eur J Epidemiol 2022. (PMID 34453631) [PubMed] [DOI]
    41. Pyrkov TV et al.: Extracting biological age from biomedical data via deep learning: too much of a good thing?. Sci Rep 2018. (PMID 29581467) [PubMed] [DOI] [Full text]
    42. Rahman SA & Adjeroh DA: Deep Learning using Convolutional LSTM estimates Biological Age from Physical Activity. Sci Rep 2019. (PMID 31388024) [PubMed] [DOI] [Full text]
    43. Raghu VK et al.: Deep Learning to Estimate Biological Age From Chest Radiographs. JACC Cardiovasc Imaging 2021. (PMID 33744131) [PubMed] [DOI]