Jump to content

Creatine: Difference between revisions

1,011 bytes added ,  29 October 2023
Line 56: Line 56:
=== Neurodegenerative Diseases and Muscular Dystrophy ===
=== Neurodegenerative Diseases and Muscular Dystrophy ===
Creatine supplementation has been explored for its potential therapeutic benefits in various neuromuscular diseases like Huntington's, Parkinson's, and Amyotrophic Lateral Sclerosis (ALS), among others. While some animal studies showed improved exercise tolerance or clinical outcomes, a large clinical trial found no significant benefit in Parkinson's or ALS patients. However, some evidence suggests that creatine might slow brain atrophy in Huntington's patients. In the case of muscular dystrophies, creatine supplementation demonstrated more promise, increasing muscle strength and functional performance. The results hint at creatine's neuroprotective properties and its potential to enhance muscle strength and endurance, although the long-term efficacy in neurodegenerative diseases remains unclear. {{#pmid:33572884|pmid33572884}}
Creatine supplementation has been explored for its potential therapeutic benefits in various neuromuscular diseases like Huntington's, Parkinson's, and Amyotrophic Lateral Sclerosis (ALS), among others. While some animal studies showed improved exercise tolerance or clinical outcomes, a large clinical trial found no significant benefit in Parkinson's or ALS patients. However, some evidence suggests that creatine might slow brain atrophy in Huntington's patients. In the case of muscular dystrophies, creatine supplementation demonstrated more promise, increasing muscle strength and functional performance. The results hint at creatine's neuroprotective properties and its potential to enhance muscle strength and endurance, although the long-term efficacy in neurodegenerative diseases remains unclear. {{#pmid:33572884|pmid33572884}}
===Brain and Spinal Cord Neuroprotection===
Creatine supplementation is recognized for its ability to enhance brain bioenergetics and provide neuroprotective benefits, especially during injury or ischemic events. Research has explored its impact on cerebral ischemia, stroke, traumatic brain injury (TBI), and spinal cord injury (SCI). For instance, studies in animals have shown that creatine supplementation can significantly reduce brain damage induced by ischemia and may also lessen the severity of TBI and SCI, leading to improved recovery outcomes. In humans, some findings suggest that creatine supplementation could enhance training adaptations in patients recovering from SCI and might aid in improving aerobic exercise capacity and muscle strength. While some human studies didn't report benefits, the compelling evidence from animal models led to recommendations for athletes at risk of TBI or SCI to consider creatine supplementation for potential neuroprotection. {{#pmid:33572884|pmid33572884}}


===Anticancer Effects===
===Anticancer Effects===
Cookies help us deliver our services. By using our services, you agree to our use of cookies.